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ABSTRACT

The use of second order closure turbulence model in predicting
turbulent flows is known to be more successful than the classical mixing
length model. However, it is found that if the turbulence constants are
not altered or modified, the second order closure turbulence model is
unable to predict satisfactorily for some flows such as round jet and
wake flows. In order to improve the predictability of the second order
closure model, the present work proposes to consider two turbulent
scales in the modelling of turbulent flows. One of these scales is based
on using the turbulent kinetic energy, k, and its dissipation rate, ¢,
to characterize the large energy containing eddies. The other scale is
based on the dissipation rate, &, and the kinematic viscosity, v, to
characterize the small energy dissipating eddies. The second scale is
based on the well known Kolmogorov hypothesis that dissipation of
turbulent kinetic energy occurs primarily at small eddies. The
turbulence model derived based on the concept of two different scales is

called the two-scale turbulence model. The existing turbulence model

which is modelled based on the one-scale concept of k and £ is called

the one-scale turbulence model.
The two-scale turbulence model is then applied to predict
turbulent free shear flows and recirculating flows. The calculations

were done in three parts. The first test case was nonbuoyant free shear

iii



flows which included round and plane jets in stagnant and moving
streams, plane wakes and mixing layer. In the second part, the model was
tested for plane and round buoyant jets having different Froude numbers.
Finally, some results were obtained for recirculating flows, namely,
backward facing step and flow past an obstruction.

It is shown in the present study that the two-scale turbulence
model performs significantly better than the one-scale turbulence model
in all the cases concerned. The prediction capability of the two-scale
turbulence model is shown since one does not need to alter or modify the

turbulence constants as in the case of the one-scale turbulence model.
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CHAPTER I

INTRODUCTION

1.1 Motivation of Research

Many fluid motions that occur in nature are turbulent, e.g. flow over
aeroplanes, ships and cars, flow in jet engines and turbines, flow
through pipes and ducts, weather patterns and ocean waves. Turbulent
flow is a complex phencmena that plays an important role in many
engineering designs. Therefore, it is important for engineers to study
and understand this complex flow and be able to predict it. Equations
for describing the fluid motions, known as the Navier-Stokes equations,
have been postulated and derived for over a century. However, it is
difficult to solve these equations for both laminar and turbulent flows
mainly due to the nonlinearity of the equations. For turbulent flows,
the problem is even more formidable because the turbulent fluid motion
is irregular, random, time dependent and three dimensional. However, in
most engineering applications, the detailed analysis of instantaneous
turbulent motion is not necessary and the gross parameters like mean
velocity, average pressure, mean temperature, wall shear stress and wall
heat flux are often sufficient for engineering design.

In 1895, 0. Reynolds [1] proposed an averaging technique by assuming

“to

that the variable ¢ at any instant consists of the mean quantity ¢ and

a fluctuating part ¢'. Hence,



8 =4+
The time averaging process when applied to the Navier-Stokes equations,
creates six additional unknowns. These unknowns, although called
Reynolds stress, are created from the convective or non-linear terms of
the Navier-Stokes equations. In order to solve the turbulent flow
problem from the time averaged Navier-Stokes equations more equations or
empirical relations are needed for Reynolds stress. Methods for
deriving equations which specify a relation between the Reynolds stress
and the mean flow quantities are called turbulence models. In other
words, a turbulence model is needed to recover the information of
turbulent motion that is lost in the averaging process. There are many
turbulence models proposed to date. However, these models can predict
accurately time averaged turbulent flows only for a certain class of
problem. A more general model is needed if one expects a turbulence
model to have a better prediction capability and a practical value for

engineering applications.

The purpose of this research work is to introduce a new physical
concept into the modelling of turbulent flows and to improve
predictability of the model. The new model is developed for the second
order turbulence correlation based on the concept of two turbulent
scales, one for large or energy containing eddies and the other for
small or energy dissipating eddies. The two-scale turbulence model is

first tested and verified for a class of turbulent flows called 'Free



Turbulent Shear Flows'. In free turbulent shear flows, shear stress,
heat flux and diffusion are significant in the directions perpendicular
to the direction of flow and there is no solid wall ig the flow domain.
Some examples, shown in figure 1.1, are mixing layer, coaxial and plane
jets, plumes, buoyant jets and wakes. The two-scale turbulence model is
then used to predict some turbulent separation phenomena such as flow

separation behind a step as shown in figure 1.2.

There are several reasons for selecting free turbulent shear flows to
test the turbulence model. First, free shear flows, as shown in figure
1.1, have a weak pressure gradient so that the flow characteristic is
largely controlled by turbulent shear motion which affects diffusion,
production and dissipation of turbulent motion and not by pressure
force. Therefore, the prediction of turbulent free shear flow is more
sensitive to the turbulence model than flows with large pressure
gradient. Secondly, abundant experimental data are available and
comparison between predicted and experimental results can be made in
detail. Thirdly, the complication of near wall turbulence is not
present in free shear flows so that the accuracy of the two-scale
turbulence model can be carefully examined without the interference of
wall turbulence. Fourthly, turbulent shear flows have a number of
practical applications and play an important role in various engineering
design. Jet engines, chimney plumes, jet streams in atmosphere, wakes
behind aeroplanes and ships and cooling water disposal in rivers are

some of the examples. Though some of these flows have walls in their
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vicinity, the study of free shear flows is, nevertheless, a first step

in understanding problems and phenomena involved.

1.2 Historical Development of Turbulence Models

In this section, a brief historical review of turbulence modelling 1is
made leading to a discussion of the problems in some of the models. In
order to resolve the difficulties in the existing models, a mnew model is

presented.

As mentioned earlier, the need of turbulence modelling arose when
Reynolds [1] proposed the averaging process to obtain governing
equations for turbulent flows. To faciltate the discussion, the Navier-
Stokes equations and the energy equation for incompressible flow are

written here as

aU*

i =0 (1.1)
x,

i
DU* ap" 32y

i = - i (1.2)
Dt pax, 9x,93x,

i J ]

¥* ¥ *
DT * 3U, 32T
pc g i

. (1.3)
bt - Y. Y Kok
] MR

The instantaneous quantities for velocity, pressure, stress and

* % * %
temperature Ui , P, Tij » T are denoted by



where the quantities on the right are the mean, Ui, P, 1.., T, and

i]
fluctuation, u., P, Tij" 8, of velocity, pressure, stress and

temperature. These are substituted in the Navier-Stokes equations and

averaged by a short time average or ensemble average to give

, *
% (1.4)
—= =0
3x,
i
2 —
DUi - 3P " va Ui ) auiuj (1.5)
Dt pax, X, 93X, ax,
1 J ] J
pcDT . an 32T auiB Iij'aui
Dt 13k, i Kax.ax. T ¥x, + pc X, (1.6)
J J 1] i J

These set of equations introduce additional unknowns uiuj, rij'(aui/axjf
and uiB. Models proposed so far to evaluate these unknowns have them
coupled to the mean quantities through either algebraic or differential

equations. Some are based on empirical relation and others on

postulations.

In 1877, Boussinesq [2] proposed the concept of eddy viscosity which
assumes that, in analogy to the viscous stresses in laminar flows,
turbulent stresses are proportional to the mean velocity gradients. For

general flow situations, it is expressed as

Uiy T velae Tl T3R8y (2327)



8 is the turbulent or eddy viscosity which, unlike molecular viscosity,
is not a fluid property but depends on the state of turbulence. k
represents the kinetic energy of the fluctuating motion or 5732731 The
above expression, however, does not close the problem of turbulent flows
as v and k are still unknowns. In 1925, Prandtl [3] proposed a
turbulence model called the 'mixing length' model. This model provides a

relation between the eddy viscosity, a length scale L characterizing the

size of turbulent eddies and a suitable velocity scale, V. Thus
v, = V*L

Both the turbulent velocity scale, V, and the mixing length scale, L,
could be reasonably approximated for many flows. However, for such
flows, empirical constants were needed to prescribe a length scale. In
most of these flows, the constants were obtained by fitting the
calculated results to experimental data of a particular flow under
study. These mixing length model constants were found [4] to vary often
from one flow to another. Consequently, the mixing length turbulence
model is successful only in predicting turbulent flows in similar
geometry and flow conditions but lacks the universality and
predictability when the turbulent flow and geometry conditions are
different. Other models [5,6], similar to the mixing length model, were
shown to have success in a given flow but lacked generality when flow

conditions and configuration changed.



To overcome the lack of predictability and generality, several more
complex models [7,8] were developed during the 1940's and 1950's which
employed differential transport equations for the turbulent quantities.
However, these equations could not be solved directly as there were
mathematical difficulties involved and numerical techniques and fast
computers were not available. Alternatively, the governing partial
differential equations for turbulent flows were often integrated and
reduced to ordinary differential equations. These integral methods
assumed some shape of mean profile and used some empirical relations for
global behavior of turbulence. They lacked flexibility since the assumed
profile must be approximately the same in the flow field and could not

be applied for different flows.

Advances in computational facilities and numerical methods during the
late 1960's and 1970's led to the use of more advanced models which
solve complete partial differential equations for both mean flow and
turbulent quantities. One of these models which solves the differential
equation for k, the kinetic energy, is called the one-equation model as
opposed to the zero-equation model where no differential equations are
solved for turbulent quantities. With the kinetic energy known, the

eddy viscosity can be written as

v, = Cuk%L (1.8)

where k% represents a velocity scale, L the length scale and Cu an

empirical constant. The equation for k is



10

Dk _ 3

Dt - 52;[0 ] - uu, 7= - C g (1.9)

which is derived from the governing equation of fluctuating turbulent

motion. Details of the derivation are given later. Here, C. and UK are

D
empirical constants. This one-equation model is not complete unless the
length scale L is specified. In most cases, L is a variable and is

obtained from simple empirical relations similar to those for the mixing

layer.

Since one-equation models [9,10] account for the convective and
diffusive transport of the turbulent kinetic energy, they are superior
to the mixing length models in flows where the transport mechanism is
important. Some examples are non-equilibrium boundary layers with
rapidly changing free-stream conditions, boundary layers with free-
stream turbulence and recirculating flows. However, in many flows it is
difficult to specify the length scale empirically. The logical extension
of the turbulence modelling is that the length scale be obtained from a

differential transport equation.

Models which solve differential equations for both turbulent velocity
scale or turbulent kinetic energy and length scale are known as two-
equation models. Several different models [4,11] have been proposed
which, in addition to the equation for k, solve an equation of the form
k™L" instead of L. The most popular one is the one suggested by Jones

and Launder [11] which has m=1.5 and n=-1. The term k' °L ! which
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appears in the last term of equation (1.9), has a physical significance
as it has the same dimension as &, the dissipation of turbulent energy.

The dissipation function of turbulent kinetic energy, & oOr

v(aui/axj)(aui/axj) can be derived and modelled as

au
De _ 3 k%3¢ £ i g?
Dt ~ ax,Ce ¢ ax,) T Ce1k i T3 Ce2 & (Bale)

Details of the derivation of equation (1.10) are given later. Here, CE,
CEl and C82 are empirical constants. The k-£ model with eddy viscosity

C

from equation (1.7) now requires six emipirical constants Cu, ck, D

Ce, CEl and CsZ'

This k-t model has been used in the calculation of boundary layer
type of flows as well as recirculating flows. The model now can predict
large number of different flow configurations and conditions and is
certainly more general than the mixing length turbulence model. Though
this model has a wider range of application in the past fifteen years,
it still lacks universality as the coefficients need to be adjusted from
one flow to another. As an example, the constant CEZ in the e-equation
has a value between 1.90 and 1.92. Using this value of sz, a reasonably
good prediction of plane jet flow can be made. However, if the value of
this constant is slightly outside this range, the solution becomes
sensitive to the constant and does not converge. Furthermore, the value
of CsZ between 1.90 and 1.92 which gives good prediction of plane jet

flow cannot be used for a round jet since it produces a 30% error in the
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spread of turbulent round jet. For a round jet, the value of C22 is

found not to be a constant and is changed [4] to 1.92%(1-0.035G) where

1)] T )

Another problem is that, if these modified k-¢£ model equations (1.7),
(1.8), (1.9), (1.10) and (1.11) were used for the calculation of plane
wake flow, there is a 30% under-prediction in the growth or spread of
the wake. This difficulty is further taken care of by making the
constant Cu in equation (1.7) a function of P/e [4] where P is the

production of turbulent kinetic energy -uiuj(an/axj) and & is the

dissipation of this energy, v(aui/axj)(aui/axj).

It should be remarked here that these difficulties are mainly dealing
with the generality or universality of the model. In general, the k-¢
model has achieved a level of predictability which mixing length or omne-
equation turbulence models could not. In order to advance the
predictability of turbulent flow motion further improvement in
turbulence modelling must be made. This motivates the present

investigation.

1.3 Scope of the Present Work

In this investigation, a fundamental change in turbulence modelling
is made, that is, to introduce the two scale concept, one based on (k,t)

scale and the other (g,v) scale. In the present investigation, k and &
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are used to scale the turbulent phenomenon dominated by large scale
motion such as diffusion term while the physical process associated with
the dissipation of turbulent kinetic energy is modelled using € and v as
the basic parameters, which is known as Kolmogorov scale. The Kolmogorov
scale which is known since 1925 is more closely related to small eddy
motion and has not been incorporated in the turbulence modelling so far.
However, in the present investigation, this scale is used. The new

turbulence model based on both (k,e) and (g,v) scale is called the two-

scale turbulence model.

In Chapter II, a description §f the physics of turbulence and the
theory behind the use of the two-scale model is given. Then, the
detailed derivation of the two-scale turbulence model is shown. Chapter
III gives the governing equations for buoyant flows. Chapter IV contains
a8 review and collection of experimental data for free shear flows. In
Chapters V and VI the prediction of several free shear flows is shown.
Chapter VII shows the calculations for separated flows. Finally, chapter
VIII contains several important observations about the model and

possible areas of further work regarding multiple scale modelling.



CHAPTER II
TWO-SCALE SECOND ORDER TURBULENCE
MODEL FOR INCOMPRESSIBLE FLOWS
This chapter gives a detailed derivation of the two-scale k-¢£ model
for incompressible turbulent flows. The complete set of governing
equations are presented which are then modelled based on a set of

turbulent postulations.

2.1 Governing eguations

The governing equations for incompressible turbulent flow are the
averaged Navier-Stokes equations, namely, the continuity equation, the
momentum equation and the energy equation. They are also known as the
Reynolds equations since it was Reynolds [1] who first used the
averaging technique. For a short time or ensemble average, the average

*
value of an instantaneous quantity ¢ at a time t can be defined as

*
¢ (t,n)

©
il

Zl

| tZ

=1

th ;
where n denotes the n  measurement of a total of N experiments. In

cartesian tensor notations, the continuity equation is

14



The momentum equation is

DU, T arijt _
—_— . - 2
Dt pGi X, * Ix, i X, (21523

1 J J

p

t ; :
where tij and Tij are the laminar and turbulent stresses, Gi is the

.body force and P is the pressure. The stresses Tij and Tijt are given by

the relations

an au, t
= — = ©
T u[axj Ezi] and Tij puiuj

The term -puiuj, known as Reynolds stress, is a result of averaging the
convective acceleration. It is generally regarded as a turbulent stress
in analogy with viscous stress, and is unknown. The energy equation,

which too has additional unknown quantities, is given by

DT _ t.,.
pth N lJaxj axi ax e (2.3)

where the laminar heat flux q and the turbulent heat flux qit are given

by the relations

t
- 3T |
qi = kax. and qi = pcuie

¢ is the viscous dissipation due to the velocity fluctuation and is

expressed as
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ou du, 9du
» = “(ax ax.)5§T
1 i

In the above five equations there are fifteen unknowns, namely, Ui’ Bl
T, uiuj, ui§ and ¢. Hence, it is necessary to obtain equations fcr

uiuj, uiE and ¢ to complete the turbulence closure problem.

Equations for fluctuating velocity, u,, and fluctuating
temperature,8, are obtained by subtracting the above averaged equations
from the original Navier-Stokes equations. This gives the momentum

equation denoted by (mi) for the fluctuating velocity component, U

Dui aui aui auiuz 13 azui
Dt T Y ax, *uy 3, ©ax, | p dx] * Vax, @@ %)

du, 8
D6 3T 38 2 320 (' - ¢)
B ¢ - - = q + (8)(2.5)
Dt £ axz 2 axl 3xz axlaxl pc
where
aui aui aui an aui du, Bui
f = 1 + | 1
¢ = T4, TulER toag ek, T Mlsx ek
J J 1 J 1

From equation (2.4), the equation for uiuj is obtained using the

relation {(m,)u,+(m,)u,]. This results in
170 jla 5
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Duiu. 3 o 3uiu.
ﬁf—_l = ax [T uJu - =(6 Ju + & = ) + vg;——l]
1 1
10) U aulaul p aui Eﬁi
-[uu U U, 7] = 2vi—F— + S(— + —) (2.6)
i lax1 ] lax1 3x13x1 p axj axi

In the above equation, the first term on the right hand side represents
both the molecular and turbulent diffusion of the stress ﬁ;ﬁj. The next
term is the product of the Reynolds stress and the strain rate which
represents the interaction between fluctuating component and mean flow.
It is often called the production. The third term is the dissipation.
The last term in this equation represents the correlation between
pressure and fluctuating velocity gradients. It is also called the
pressure-strain term or the redistribution term. The above equation can
be contracted to get the equation for turbulent kinetic energy k or

uiui/z by summing i=j and dividing it by 2. This gives with ¢ =

v[(aui/axz)(aui/axz)]

138 18]
Dk _ 93 ii.p At === gl )
Dt axz[ A i M "axz Hite ax, € (Zotl)

where the term on the left side represents the time rate change of
turbulent kinetic energy following the mean convection Ui' The first
term on the right side is the diffusion of k. The second and third terms
are the production and dissipation of the turbulent kinetic energy. The
dissipation term, €, represents the rate of dissipation of turbulent

kinetic energy and is an unknown in the above equation. It should be
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remarked that the dissipation term ¢ appears naturaliy in the k-
equation. The variation of & in the flow field has an important bearing
of the distribution of the turbglent kinetic energy. Thus ¢ is an
important turbulent transport property. The differential equation for ¢

is derived from the (mi) equation by using the relation

Zv[a(mi)/axl][aui/axl]. This gives

De _ 3 i auiaui ) 2v8u23§7 L0 zvigi[auiéuz 5 auiéuj]
Dt 3x 23x,3x, pax,dx, X 9x, " 3x,9x, Ix, 3x
2 i3 i3 2 31 e
EuiazUi auiau.auj azui 4
-2vu - 2v - 2[ve——1] (2.8)
Zaxgaxzaxj axjaxgax2 axlaxi

It should be noted that although the above equation is exact but every
term on the right side other than the viscous diffusion v(as/axl), is an
additional unknown quantity. The first term on the right side is the
diffusion of & while the second and third terms represent the production
of . The last two terms are often called the destruction of £. The

modelling of these terms will be done in the next section.

Finally, the uiB-equation is obtained from equations (2.4) and (2.5)

by using the relation [e(mi)+ui(9)] which results in

SAEU Wy P RS
Dt ax, ¢ ety it p Lax ax
2 s '}
aT 3U, ' 3,30 ——
(T, + T B) - (atv)——— + 228 1700 (2.9
i lax2 2 axz axgax2 paxi pc i )

where
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aui Sui aui an aui u, aui

' = — 4+ U[r— F =) —F + p[—> + —I] 2
Yijoax, MK e ek, t Rl o lan

j j i j i

3

In this equation, the terms on the right side are diffusion of E;F' the
production of ﬁ;ﬁ: the dissipation, the pressure-gemperature correlation
and the frictional heating terms respectively. The unknown'ETE; in the
E;glequation represents the frictional -heating generated by the
fluctuating component and is usually considered to be smaller than the
frictional heating generated by.the mean flow motion rij(an/axj).
Hence, it is often omitted in the mean energy equation. It should also

be noted here that a part of the mean energy equation (1.6) u[&ui/axj +

auj/axi][aui/axj] is equal to ¢ which is derived in equation (2.8).

The four transport equations (2.6) to (2.8) derived above have
several unknown terms on the right side most of which need to be

modelled. This is discussed in the following section.

2.2 Concept of Two Turbulent Scales

Before attempting to model these equations, a brief discussion of
turbulent flow structure is done and the concept of the two turbulent
scales is introduced. In order to visualize the existence of two
significantly different turbulent scales in a turbulent flow, it is
instructive to consider a turbulent correlation function Rij(x;r) for

velocity fluctuation, which is defined as

Rij(X;r) = ui(X) uj(X+r)
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where ui(x) is the instantaneous value of the ith component of the
fluctuating velocity at the point of the position vector x and u, (x+r)
the jth component of the fluctuating velocity at (x+r). The average,
with a bar over uiuj may be considered either a time average or an
ensemble average. If r=0 and i=j, the one point correlation Rii(x,O) is
the Reynolds normal stress in the ith direction. The correlation
Rij(x,O) includes all possible ;urbulent eddy sizes at the position x.
It is difficult to differentiate the scale that is significant in
carrying out a turbulent process. One way to examine the behaviour of

each turbulent eddy is to consider a spectral analysis of the

correlation Rij(x,O), i.e.

3
45500 = (;—“ fRij(x;r) exp(-ik.r) dr

- —p P .
where (k.r) is the wave number vector, k dot the position vector at r

distance from x. The wave number vector may be written as
== ; n
k=k i+k j+kk
X y z

The component wavenumber, ki, is related to the fluctuating frequency n,

and the wavelength ki of an eddy in the X direction by

27 21rni
A

In fact ¢ij(k) is the Fourier transformation of Rij(ij?). The inverse

N N . >
Fourier transformation for recovering Rij(xff) thus becomes
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e
N
]
ol
~
I
gz

>
¢ij(k) exp(ik.r)dk

The reason for examining the spectral distribution ¢ij is that the
transform is simply a method of representing the complex random wave
form of turbulent eddy motion associated with Rij by what is equivalent
to a sum of sine or cosine waves of various amplitude or frequencies.
The total sum of all sine and cosine waves is equivalent to the original
wave form of Rij(§§f). Thus, one may think of ¢ij(E) as a fluctuating
intensity of Rij(;;;) at a wave number, ki, or frequency n,. If the
fluctuating intensity is large at a particular range of wave numbers, it
means that the physical process of the turbulent phenomenon is

intimately related to this range of wave number.

For the present analysis, the energy spectrum of a steady isotropic

flow behind a wind tunnel grid at r=0 is considered. Then
-5 B -
R, ; (K;0) -_£¢ij(k)d§

—~» —
The energy spectral ¢ii(k) is a function of the wave vector k or of a
given point at ¥ in wave space. An integrated energy spectrum Eii(k)
which is a function of a scalar variable k can be obtained by

integrating the energy spectrum ¢ij(k) over a spherical surface of

—i
radius k=|k| or

By () = j:ij<k>ds(k)
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Here, ds(k) is an element on the surface of the sphere of radius k.
Eij(k) thus may be taken as the energy contribution from the eddy size
with wave number k to the uiuj correlation. The energy spectrum function

of turbulent kinetic energy in the wave space is
E(k) = ZE_ (k)
27ii

The total kinetic energy of the turbulent flow is then

1 Shd ro
e s = IS

In particular, for isotropic flow the relation is

od

jE(k)dk = %uz
0

The spectrum equation of turbulent kinetic energy equation for isotropic
turbulence can be written [12] as

EE) < 7k) - DK

at

where T(k) is associated with the transfer of energy between wave

numbers or eddy sizes. Its integral over all wave numbers is zero. It

can thus be defined by a different transfer function

k

S(k) = - JT(k)dk
o}
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which is the total energy transfered from eddies in the range from 0 to
k to those in the range greater than k. In other words, S(k) is the flux
of turbulent kinetic energy from a spherical volume of radius equal to
wave number k. D(k) is the rate of dissipation of turbulent kinetic

energy at the wave number k and is equal to

D(k) = 2vkZ2E(k)

Figure 2.1 shows the schematic energy spectrum E(k,t) and the
dissipation spectrum D(k,t) for an isoptropic flow. The solid line shows
a typical energy spectrum and the dashed line the dissipation of
turbulent kinetic energy. Figure 2.2 gives the measured energy spectrum
and the dissipation [ 12-14 ] in log-log scale for a steady flow behind
a square grid screen with spacing of M in a wind tunnel. Here, the
dimensionless wavenumber k is defined as 2man/U with n the frequency of
a fluctuating component in turbulent flow, U the mean flow velocity and
0 is the Kolmogorov length scale‘or (v’/s)i. t is a dimensionless time
or the real time normalized by a characteristic time M/U. In figure 2.2,
the Reynolds number Rek is ng/v where kg is Taylor's microscale [12].
The wavenumber, k, may be considered to be inversely proportional to the
size of the eddies. In other words, the larger the size of the eddy, the
smaller is its wavenumber. From figure 2.2, it can be seen that the
measured energy and dissipation spectra are quite different and can be
associated with different wavenumbers. For instance, a wavenumber

characterized by kd’ in the order of 10-1 at Reynolds number Re, of 540

A
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may be considered to be associated with the size of the small eddies
that provide the main contribution to the dissipation of turbulent
kinetic energy. This value kd roughly corresponds to the maximum value
of the dissipation curve. Similarly, there is a range of spectrum which
corresponds to the energy containing large eddies. A wavenumber
characterized by ke, in the order of 10-4 at Rek of 540 may be

considered to associate with this range which corresponds to the peak of

the energy curve.

It has been shown both experimentally by Frieche et al. [13] and
theoretically by Driscoll and Kennedy [14] that these energy and
dissipation spectra change with Reynolds number. As given in figure
2.2, an increase in the Reynolds number causes the peaks of the energy

and dissipation curves to separate further away.

In most of the spectral analysis, a turbulent Reynolds number is
associated with the wavenumber, ke. It has been shown [12] that
=g A R

l'— =
k e 15
e

ekxg

where A is a constant and le is the length of the eddy corresponding to
the wavenumber, ke. Rex is the Reynolds number based on Taylor
microscale, Xg or ng/v. The Taylor microscale is a length scale
associated with the curvature of the spatial velocity autocorrelations

[15] and is related to the dissipation & by the expression [12]



where u' is a velocity fluctuation.

Driscoll and Kennedy [14] obtained the energy and dissipation spectra
for Rex ranging from 13 to 540 as shown in figure 2.2 The dimensionless
wavenumber, k, is defined as 2mnn/U where n is the Kolmogorov length

3

scale or (v'/e)®. The energy spectra shows that when Rex increases ken
decreases. For a value of Rek=13, the peak wave number ke is about 0.01
whereas for Rex=540, it is 0.0001. Hence, it can be said that the

structure of turbulence is dependent on Reynolds number, whether it is

the turbulent Reynolds number or the mean Reynolds number.
The quantity E(k) [12], used in Figures 2.1 and 2.2, is defined as
= 2
E(k) 21k Eii(k)

where Eii(k) is the Fourier Transformation of the correlation tensor

u.u, or
11

11

3
E,, (k) = (;—“ f—uiuiexp(--ﬁc.?) dz

Thus, the total energy contained by all the eddies is 1.§Er,i.e.

u

W

E(k)dk =

[Ny

Therefore, figure 2.1 shows, conceptually, two distinguishing features
of turbulence when one examines the turbulent spectra or turbulent

eddies. The solid line gives the energy spectra from which it can be
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Wavenumber k

Figure 2.1. Energy and dissipation
spectrum of an isotropic flow
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seen that the range of eddies containing most of the energy are large in
size (or lower in wavenumber range) and is comparable to the width of
the flow. They transfer their energy to smaller eddies. It is in this
range of smaller eddies where most of the dissipation of turbulent
energy occurs. The larger the Reynolds number, the smaller is the eddy
size. These properties of turbulent flows are obtained by experimental
measurements and not by any postulation. Hence, it seems natural to
consider different scales for thé modelling of the k and £ equations
(2.7) and (2.8). The measurements of Frieche et al. [13] reveal that
large eddies possess most of the turbulent kinetic energy in the flow
and do not play any significant'role in the dissipation of turbulent
kinetic energy. On the other hand, Kolmogorov [12] found that small eddy
characteristics are functions of (g,v). In the medium range of eddy
size, a process described as the transfer function T(k,t) derived from
convection terms of the k-equation (2.7) provides a mechanism to
transfer the turbulent kinetic energy possessed by large eddies to small
eddies before it is consumed by the viscous dissipation and turned into
thermal energy. This distinct difference in the behavior of turbulence
at different wave number was known for sometime. However, it has not vet
been incorporated in most of the turbulence models. The existing models
characterize the velocity, length and time scales for turbulent flows
based on k and £. However, in any turbulent flow, it is the larger
eddies which cascade to become smaller eddies through inertial
interaction, thereby transferring energy to the smaller eddies. At the

same time, viscosity effects and, with them, dissipation become more and
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more important for the smaller eddies as shown in figure 2.1. For a
certain range of these small eddies, it can be shown that turbulence is
in statistical equilibrium. This is the range in which viscosity can be
effective in smoothing out velocity fluctuations. The generation of
these small scale fluctuations is made possible due to the nonlinear
terms in the equations of motion. On the other hand the viscous action
prevents the generation of infinitely small scales of fluctuating motion
by dissipating turbulent kinetic energy into heat. One may consider that
at large Reynolds numbers, the relative magnitude of viscous force
compared to inertia force is so small that viscous effects in a flow
tend to become vanishingly small. However, Townsend {15] reasoned that
the nonlinear terms in the Navier-Stokes equations counteract this
effect by generating motion at scales small enough to be affected by
viscosity. In other words, as soon as the scale of the flow field
becomes'so large that viscosity effects could be neglected, the flow
creates small scale motion thereby keeping viscosity effects and, in

particular, dissipation rates at a finite level.

At these small scales, turbulent motions are statistically
independent of the relatively slow large scale turbulence and of the
mean flow. Hence, as Kolmogorov reasoned, the character of turbulence in
this range is determined by &, the rate of dissipation of k and the

viscosity v. These considerations led Kolmogorov to make the following

hypothesis:
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' At suffficiently high Reynolds numbers there is a range of high wave

number where the turbulence is statistically in equilibrium and uniquely

determined by the parameters £ and v. This state of equilibrium is

universal'.

Using these two parameters, & and v, velocity, length and time scales

for small eddy motion can be characterized by

i 3

v=od 0= e ad tzav= (we)l

which can be cbtained by dimensional analysis of v and €. On the other
hand, in the large turbulent eddies, the turbulent kinetic energy, k, is
important since these large eddies are responsible for carrying
turbulent energy and extract energy from the flow motion to sustain
turbulence. Therefore, the character of turbulence in the large eddy
range is determined by &, the rate of dissipation of k, and the
turbulent kinetic energy, k, itself. Using these two parameters, &£ and
k, the velocity, length and time scales for large eddy motion can be

characterized as
; 2 =k'"S/g and t = 2/u = k/¢

Though the above analysis was done for isotropic flow, which is not
the case in many practical situations, it has been shown [12]
experimentally that the fine structure of nonisotropic turbulent flows
is almost isotropic (local isotropy). This is, however, not true for éll

experimental results. Nevertheless, many qualitative features of
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isotropic turbulence, particularly the distribution of two turbulence
scales, apply to phenomena in actual turbulence. Measurements of
Kolmogorov fine-scale turbulence structure in various flows shows that
differences between results are often sufficiently small to be

negligible in the first approximation.

Several investigators [16,17] have mentioned in the past that it is
the £-equation [equation (2.8)] which needs to be carefully studied.
This is because of the complexity and difficulty in modelling the &-
equation. The physical meaning of the different correlations among all
sizes of eddies and fluctuating quantities is sometimes difficult to
understand. As an example, the production term containing the second
derivative of the mean velocity U in equation (2.8) for & is neglected
invariably by most investigators. The reason for this is that this term
is assumed to be much smaller than some of the other terms in this
equation. However, the physical significance of this term is still not
clear. Therefore, due to lack of information about such terms the -
equation needs to be further investigated in order to improve the
accuracy and prediction capability of the model as well as making it

more general.

#

The concept of using different time scales was first proposed by
Lumley [17} in 1975. He suggested that each term in both the k and &
equations be modelled either by using the (k,g) scales or the (k,e,v)
scales. However, in the final form of the modelled e-equation suggested

by Lumley, the scale containing v was neglected. Another approach
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considering multiple scales was made by Hanjalic et. al [16]. They used
two different timg scales by dividing the whole energy spectrum into two
parts -- the energy containing eddies and the dissipating eddies. For
each region, a separate time scale is used to model the k and ¢
equations. Results were obtained for several thin shear flows which show
an improvement in the level of agreement with experiments over that
obtained with models employing only one time scale. The authors
suggested that by dividing the spectrum into more number of parts and
solving the two equations in each region, a further improvement in the
result could be obtained though the computational time would
considerably increase. However, the authors did not present the

results.

In the present investigation of turbulence modelling, the two-scale
concept is employed. The two scales are the large eddy or energy
containing scale based on k and ¢ and the small eddy or energy
dissipating scale based on v and €. The two-scale concept is applied to

all turbulent transport equations whenever it applies.

2.3 Turbulence modelling

Before modelling the transport equations, the postulations of
turbulent flow are listed below. These postulations are made by various
models and summarized by Chen [18]}.

1. Navier-Stokes equations are valid in describing turbulent motion.
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3

2. Turbulent diffusion of a turbulent transport quantity (uiuj, k
€, uiﬁ) is proportional to its gradient.
3. BSmall eddies are isotropic.

4. All turbulent quantities are functions of ﬁ;ﬁ}, k, s,-ﬁ;F: U, P,
T, p, v and «a.

5. The model equations should be consistent with respect to
symmetry, invariance, permutation and physical conservation laws
imposed on the original equations.

6. Turbulent scales are functions of k, £ and v. Large eddy scales

based on (k,e) are {u] = k%, [1] = k' %/e, [t]

k/e and small
by
(vi/e)*, [t] =

eddy scale based on (v,z) are [u] = (vs)%’ [1]

(v/s)%.

7. Turbulent constants in the model are determined from experiments.

The two-scale turbulent flow model is now derived in the following
section. Both (k,e) and (v,g) scales are used in the modelling of the g-
equation. As for the modelling of the'ﬁzﬁa and k equations, the large
eddy scale (k,g) is used for the reason that the large eddies which
contain most of the turbulent kinetic energy are also responsible for

turbulent diffusion and pressure-strain interaction. Further details

are presented below.

2.3.1 Modelling of uiuj and k equations
The turbulent diffusion term of equation (2.6) is modelled based on

postulate 2 that the diffusion of uiuj is proportional to its gradient

or
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™ 02 du,u,
- u,u.u +=(8, u, + u ) =¢C [—-—]————'l
132 p o j2i 1 X,

In order to keep the dimensions consistent, a quantity with a scale of
[lz/f] is needed to complete the model. From dimensional analysis hased

on large eddy scale (k,tg), it follows that

[w] = k%5 (8] = k¥ S/e; (€] = k/e;  [23/t] = KP/e

The (k,e) scale is chosen here instead of the small eddy scale (v,g)
based on the physical ground that diffusion of any quantity by turbulent

fluctuation is largely controlled by large eddy motion. Thus

kz auiu .

k £ ax

- u,u,u, + p(GJlu + 6 u ) = )

ij e

Here, Ck is a proportionality coefficient. It should be remarked here
that the model observes the symmetry of the original form between i and
j as stated in postulate 5. The dissipation term in equation (2.6) is

modelled based on postulate 3 as

du, Ju d3u_ au
2v—= =25, v—= 2 = 2 £
3x2 3x2 371ij ax2 8x2 371j

This is based on the understanding that the larger the Reynolds number
the smaller the turbulent eddies are and that the smaller these eddies
become the more isotropic they will be. Thus, the dissipation of

turbulent stress uiuj by the small eddies is mainly in the isotropic



range. It shoculd be noted here that under postulate 3 and the model
presented, the dissipation of uiuj can occur only in the normal stress
uiuj for i=j and not the shear stress when i#; However, when i=j the

model term reduces to the exact expression.

The pressure-strain term is modelled based on postulates 4 and 5 as

[19]
P, e 2 2
p(5§; Tk T Tl ROyt 3050 - Cp(Pyy - 58,PyY)

where Cl and C2 are model cocefficients determined from experiments and

au, 3U, U

- = = T ‘n
Pii Gy ax, ¢ Ut axl) NendimiE et =

Further details of the modelling of uiuj equation can be found in

[18,19]. The modelled uiuj equation, thus, has the form

Duiu. _ 3——[c Ei auiuj " vauiuj] - 25 .
Dt axz ke axz axz ij 374ij
£ —— 2 2

C1 k[uiuj 35ijk] CZ[Pij 36iij] (2.1
From this equation, the k-equation is obtained by summing i=j for
i=1,2,3 and dividing the result by two. This gives

au

Dk _ 3 k23k 3k i
Dt axl[ck e ax, © Vaxl] i ax, T ° (2.1

35

0)

1)
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It should be remembered here that in equation (2.11), where i=j, the

pressure-strain term (p/p)[aui/axj + auj/axi] is identically equal to
zero due to incompressibility requirement. Therefore, in equation
(2.11), only the first term on the right hand side is modelled and the
rest of the equation is exact as derived in equationm (2.7). It shou.id
also be noted that equation (2.11) portrays the interaction of all
turbulent eddies. The last term in equation (2.11), £, is dominantly
associated with the small eddies and is responsible for dissipation of
turbulent energy that is produced, first, by -ﬁ;ﬁ}(an/axl) through the
stress exerted by the fluctuating motion on the mean flow motion and
secondly, by turbulent and viscous diffusion shown in the first term on
the right side. The diffusion term can be reasoned to be more
intimately correlated with the large eddy motion. This is why the length
and time scale of large eddies [1] = k''®/e and [t] = k/¢ is adopted in
modelling the diffusion term. Although two scale concept is evident in
the k-equation, there is no need to invoke the second and small scale
(g,v) in this equation as the last term, &, is exact. The situation,
howevgr, is different when one attempts to model the tc-equation. This is

considered in the following section.
2.3.2 Modelling of g-equation

The modelling of £-equation is important because it governs the way
in which the turbulent kinetic energy is dissipated. As mentioned
earlier, the performance of the modelled e-equation based on a single

turbulent scale of large eddies is not as satisfactory as the other
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modelled equations. First, the model constant, Cu which appears in the
equation for eddy viscosity and Csl’ which appears in the e-equation,
are found not to be constants. Secondly, the prediction of turbulent

flow is quite sensitive to the values of the constants Cs and CsZ'

1

In modelling the e-equation, équation (2.8), it should also be
remarked that all eddy motions contribute in the equation. The
dissipative action is dominant at the small eddy level while the

convective and diffusive actions are predominant at the large eddy

level.

The scale at which the small eddy is manifesting its dissipating
function in a given flow, is intimately related to the large scale
structure and the ratioc of inertia force and viscous force or the
Reynolds number as already discussed in section 2.2. The effect of
large scale motion on the small eddy scale is transmitted through the
transfer mechanism created by the nonlinear term of the transport
equation. Each term in the t£-equation contributes differently in a
different range of eddy size. Thus, it is important to model each term
in g£-equation individually according to the eddy size that characterizes
the physical process of the term. Proceeding in this way, the e~

equation is modelled below. The first production term in equation (2.8)

is modelled as

3U, 3du_, 3u Ju. 3u
1l i

V -
axj axi axj axz sz
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This is because, for i=j, the mean strain is zero from conservation of
mass for incompressible flow and for i#j, the quantity in the
parenthesis is zero from the isotropic nature of small eddies at large

Reynolds number which is mentioned in postulate 3.

The second production term,

3u, 3%U,
30 i
va, —=

zaxja—x_zﬁ';
is also neglected, based on Lumley's [17] proposal that the correlation
coefficients between two quantities, each from a different range, are of
the order of the time scale ratio Re-%. In this case, u, is considered
to be in one range characterized by the large eddy scale and aui/axj in
another range by the small eddy scale and consequently the value of

correlation coefficient is considered small or weak compared with the

other terms in the tg-equation. For example,

has a strong correlation as the terms aui/axj, aui/ax1 and auj/ax1 are

in the same range. Therefore,

aui aui ou, 5ui 82Ui
zvax. X, 9x > Zvug ax. 9x, 93x,
T J T

So the second production term is dropped from the g-equation.
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The modelling of the two destruction terms is done based on postulate

7,

4 that they are function of the quantity Pk/s and other transport

variables in accordance with Lumley's argument [17]. Here, Pk[=

-uiuj(an/axj)] is the production of turbulent kinetic energy. Thus

aui aui a_ul Tul——z— Pk
ZVEET ax, ax, Z[Vax ax I = fn(;- k, £, v)
j e L5

Lumley assumed that these two terms should vanish when the turbulent
flow approaches equilibrium. Thus, for small deviations from turbulent
equilibrium, this function may be approximately expanded to obtain
P P
ky = (£ K= pLye
a5 = [E101 - ] = [£][e - P

> k]

Here [e/t] is the dimension needed so that the overall dimension of the
£-equation and that of the two destructive terms are consistent. t is
the time scale that characterizes the physical action for destruction of
€. Since the dissipation or destruction of ¢ physically is dominated in
the small eddy range, the time scale, t=(v/s)%, based on Kolmogorov
hypothesis, is used in the present work. Hence, the modelled

destruction term is

3ui aui a—ul a‘ui 2 ) an ,
2\)5}'{-3 ——axz axz - Z[V—axga_xj] = -Csl(t/\)) uiuj -a—g - ng(g/v) €

This model differs from the existing turbulence model [19] in that the

Kolmogorov scale (g,v) is used for the scaling of time [t] instead of
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the conventional scale based on (k,tg) which leads to the conventional t-

equation given in equation (1.10).

The diffusion term in £-equation is modelled according to postulate 2

that it is proportional to the gradient of &, or

: 2
il e | IR

g _ k? 3¢
el C
i p ij axj 't

9xX, £ £ 99X
J

]

Here the length and time scales are modelled based on the large eddy or
£ =k!'"®%/e and t = k/e

as shown before. Thus the modelled £-equation based on the two-scale

concept and Lumley's suggestion for destruction term is

U
De _ 3 . k%3g | 3 . 3— i 3
Dt ax, C. 2 o, + “axQ] Cep(e/v) U, =%, Ceple/v)ie ©rdsD

Here Cs’ Csl and C€2 are model proportionality coefficients. In
general, they can be a function of fluid or flow properties such as

Prandtl number or Reynolds number.
2.3.3 Modelling of uiE-equation

Finally the modelling of the uia-equation [equation (2.9)] is done to
complete the turbulence closure problem. Using the same postulates as
those for modelling the uiuj equation, the diffusion term of this

equation is modelled as
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,9u.8
_ T oM, Bl e
it ig p T ¢ axl

and for o« = v,

The dissipation term vanishes due to the assumption of isotropic nature

of small eddies or postulate 3, i.e.,

u,
-(a+\))§;{i%'e—=0
]

The pressure strain term (P-8) is modelled according to Launder [20] as

EY:) £ an
x, Cri e%i8 CTzumGSE;

o |*v

The frictional term in uis-equation is neglected as it is an order of

magnitude smaller than the other terms. Hence the modelled uiE-equation

takes the form

Du.® ,9u,0 3u.o v,
be = g (Cp % e - [yu, gz; + u 85
Xl XQ xz 1 XZ )(2
- S—- an-——
- CTl Euie + CT2 Szgume (2.13)

Again, CT’ CTl and CT2 are model coefficients.
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Summarizing the two-scale second order turbulence model, we have the

following equations

ij

k!

an
ax, 0
i
t
oy at at, .
p__i _ _ )3 ij 1]
Dt pGi X, i X + axj
CQI T, au ) aqi ) 3q o
PDt Jax ax axi
Du_u, 3 2 80T aﬁ;ﬁ,
Dtl ™ [ck € 9x o+ 3% J] R
L ] 2 §|
-c, E[Ww, - %, k] - c[P,, - 25, .P
Lk i) 371 24 1ij 371j
Dk _ 3 o ki3 | 8k, ﬂ_s
Dt axz k ¢ ax2 axz i“e ax2
Dt axz[ =& 3x, = Cei(e/v) u u,
Du_#® 290,08 o
el L e T
Dt 3x2 T ¢ axl axz i“e 3 l
z au,
- Cpp §%0 * Cpp &Tm‘_‘;g

(2.1)

(2.2)

(2.10)

(2.11)

(2.12)

(2.13)
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2.4 Determination of Turbulent Coefficients

The above 11 equations for turbulent quantities have 9 dimensionless

coefficients or constants, namely, C

Cr» C1» Oy Cps Cpys Cpys Oy Cpy and
CT2 to be determined from experiments. The determination of the value of
turbulent coefficients in principle is similar to the one for laminar
flow where an experiment has to be performed to obtain the values of
viscosity and thermal diffusivity of the fluid. The laminar coefficients
which are dimensional such as kinematic viscosity v and thermal
diffusivity o« turned out to be dependent on fluid and thermodynamic
variables, temperature T and pressure P. The turbulent coefficients are
dimensionless and can, in general, be functions of fluid and flow
properties such as Prandlt number or Reynolds number. If the turbulent
flow equations are properly modelled, the model coefficients should
remain universal and can be evaluated once for all from the chosen
experiments. Thus, the process of determining the constants is not a
case of experimental data fitting. It should be remarked that although
these coefficients may depend on fluid properties like laminar flow
coefficients v and a, they are determined mainly from experiments
performed in air and water. Many investigators consider that these
coefficients remain the same for both fluids. Whether these
coefficients are valid for turbulent flows in other fluids such as oil
or liquid metal is not known. The following subsections highlight the

method of obtaining these constants.
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2.4.1 C and Cs

el 2

The coefficients Csl and C82 are obtained from experimental data of
homogeneous shear flow and turbulence behind a grid [21]. Consider a
uniform flow of velocity Uo passing a square grid with spacing M. The
flow behind the grid can be made isotropic by contracting the area of
cross section by a factor of 1.27. Thg k and € equations for isotropic

turbulent flow behind a grid (figure 2.3) are

'y
b

Yoax = 7F
and
de _ _ 3
U° e Cez(s/v) £

Here x is the coordinate along the flow direction. It should be
remarked here that the diffusion terms of k and ¢ equations in their
exact form are zero for isotropic flow. Nondimensionalizing these

equations using the variables

x' =% =K £! = —% Re = EQE

the following equations are obtained, i.e.,

k&

l
'
™

and
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From figure 2.4, the relation between k and x is found to be
approximately for air [18]

450 1=1

t
k' = %0000 X

between 10 < x/M < 200 for the approximately isotropic range and for ReM

. 3 4 . . . . .
ranging from 107 to 10 . Substituting this in the k-equation gives' a
relation between & and x, which is

v oo _dk' _ 450 -2
dx' = 40000%

This is now substituted in the e-equation to give

450 1734 5 o L ¢ Red(

- ; 450 1.8 |'3
40000 * £2 )

40000

Hence, C82 is calculated to be

40000)% -é 18.9

Cea = 20550 450 VRe

€2

It should be mentioned that the flow behind uniform grid is not truly an
isotropic flow since u?/v? is always greater than one. u?/v? starts with
about 1 immediately behind the screen for Rex > 103 and increases to
1.55 downstream [18]. Therefore, decay data for turbulent kinetic energy
k' versus x' beyond x/M > 200 should not be considered as an isotropic

data and used in determination of turbulent coefficients. The value of
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C81 is next obtained from homogenecus shear flow as shown in figure 2.5.

For such a flow, the k and & equations are

o
1]
1}

=t

<l
|
]
™M

and

0 = -Csl(s/v)% uv%g -Csz(e/v)%s

Substituting the k-equation into the g-equation gives

3

Csl(s/v) g - ng(s/v)%s =0

Therefore,

- - 2
Cpy =C.p, = 18.9 Re

The diffusion terms in k and € equations are assumed to be approximately
zero here. Strictly speaking they are nonzero. Consequently the
determination of C51 should be considered only an approximate one. The
coefficients C“:1 and C82 for the destruction term in the g-equation were
found to be function of Reynolds number based on a characteristic mean
flow velocity Uo and a characteristic length M. The appearance of

Reynolds number in CE and C82 reflects that the small eddies

1
responsible for destruction for ¢ are indeed a function of mean Reynolds
number. In other words, the size of small eddy and the time scale that

characterizes the destruction of £ changes when Reynolds number changes.
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It should be remarked here that in the one-scale turbulence model the
coefficients Csl and C82 in equation (1.10) are found to be independent
of Reynolds number. Their values are not universal and require
modification in some flow configurations such as between plane jet and
round jet. To compensate the contribution of diffusion Cs in the

1

-3
present study is taken to be approximately 17.5 Re . The fact that C81
and C82 required modification weakens the predictability of the ome

scale turbulence model and motivates the present investigation of the

two scale turbulence model to improve the predictability of the model.

2.4.2 C1 and C2

The constants C1 and 02 in equation (2.10) are obtained in a way
similar to Csl and CEz [18]. Experimental result of anisotropic
turbulence behind a grid by Uberoi [21] are used. For such a flow,
U=Uo=constant and V=W=0. By passing this flow through a 4:1 contraction
of flow cross-section area, the turbulence becomes strongly anisotropic.

With Uo= constant, the exact equation for uiuj [equation (2.6)] where U%

>-;7 = w2 becomes
du? _ du_ au 2p Ju
Uo x, 2\"ax Ix o ax
2 L % P

when i=j and the modelled equation is

—3 1
du® _ 2 z _ 2
Usax, = ~ 3% - € v 3%)
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Figure 2.3. Isotropic flow behind a grid



Figure 2.4.

k-distribution in an isotropic flow
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Dividing the second term on RHS of each equation by the first term on

the RHS gives

EEEE - £ 20 =
p 3x Cl k(u 3k)
3uz
= =-C.G— -1
2yl 30 2. 172k
Yax, x 3

In order to accurately determine Cl one needs to avoid data of 1.5(u?/k)
which is close to one since it will make the right hand side of the
above expression zero. In other words, one should consider the data in

the strongly anisotropic range,.Ei/Gr-> 1, or between x/M equal to 0 and

40. From figure 2.6, (vZ/u?)=1.83 for x/M=25 where wi=vZ. Thus

w3 v 3
3 u® _ 3v*/1.83 -
2K vi(1/1.83 + 2) RO
From figure 2.7, at x/M = 25,
2P au
p 9x
o - 0
2Vax, ax,
2 [}
Hence
3u _
- C1(2k 1) = 1.0
and
= 2.
C1 8

If data at x/M = 12.5 is used, Cl = 2.88.
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Next, C2 is obtained from experimental data of homcgeneous shear
flow. Figure 2.5 shows the values of k, E’, v% and w? for such a flow.

The modelled Reynolds stress equation (2.10) for uZ? becomes

o=0-2u—v3[—’-gs-c

£ — 30
3y 3 lk

2oe R . 2 iy
(u 3k) C2(2 3)uvay

The k-equation (2.11) becomes

From figure 2.5, at x/H=10,
-3 2
(u* - gk)/k = 0.22

Substituting the above value and & in the uZ? equation gives
4(1 - CZ)/SCl = 0.22

For C1=2.8, C2 is found to be approximately 0.54. The commonly used

values of C1 and C2 are 2.3 and 0.4.

2.4.3 C and CT

T1 2

For these coefficients, the experimental data of homogeneous shear
flow with a temperature gradient obtained by Webster [22] is used. The

modelled equation for uiB is
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Du.8 ,du.0 3u. 8 v,
dn, - 3__[c K* 4 e ] - [Tu 3T .
Dt axZ T ¢ sz 8x2 i 2 axQ 2 ax2
£ an——-
- Cpp §558 * Cpy 'aTmum8 (2.13)

To determine CTl’ i is set to 2. For the homogeneous shear flow, this

gives

=0 -(33T _ - L
0 =0 -(v py 0) (5 v

and the k-equation gives

0=0 - ﬁvig -
3y
Therefore,
C.. = - 2k Q3T/3y) _ v2 k  (3T/3y)
T1 £ vB uv  vB (aU/a3y)

From experimental data of Webster as shown in figure 2.8 the magnitude
of uv, v?, k and V8 are found to be about 0.5, 1.9, 3.23 and 0.38,
respectively. These values are for Richardson number, Ri, of 0 as
indicated by the dashed lines, which represent the averaged value of the
experimental data. Further, the ratio of the temperature gradient to
the velocity gradient is obtained from experimental date to be 0.1.
Substituting these values in the above relation, CTl is calculated to be

3.2. Similarly, CT’ is found by letting i=1 in the modelled uig

equation. This gives



0=0 - [l + 983 . ¢
3y

a8 + C vB—
3y

T 2 T2 "3y

Again, from experimental data of figure 2.8, uf is 0.47 at Ri = 0.

Hence, C is calculated to be 0.5.

T2

2.4.4 Ck, Ce and CT
The coefficients Ck’ CE and CT are obtained by computer optimization to
be 0.9, 2.00 and 0.13 respectively. Several investigators [18] have
obtained these constants from experimental data of near wall turbulence.
Their values are not used in the present model. Instead, the modified
values that give best results are used. However, once the values are

determined they are kept constants for all calculations in the present

study.

2.5 Concluding remarks

From the above discussion, the 9 turbulent coefficients or constants

are determined to be as follows:

Ck=0.9; C£=2.00; CT=0.13

=5 =175 3, -
C,=2.8; C_,=17.5/(Re)®; C,;=3.2

. - 3 #
C,=0.4; C_,=18.9/(Re)®;  Cp,=0.5

where Re is the Reynolds number based 6n the problem characteristic
velocity and length. These coefficients are determined from different

experiments. However, if the turbulence model is to have predictability,
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the coefficients should remain the same in other turbulent flows. This

will be examined in Chapter V.

It should be remarked that Reynolds number appears in the turbulent
coefficients for the two-scale turbulence model. This was not the case
for the one-scale turbulence model. The appearance of Reynolds number is
expected since, as discussed in section 2.2, turbulent flows are still
Reynolds number dependent and also because small scale (v,e) proposed by
Kolmogorov for dissipation of turbulent kinetic energy contains
kinematic viscosity. Physically, this implies that Reynolds number
changes the magnitude of the destruction of & and hence affect the
magnitude of & and range of eddy size that is responsible for the

dissipating the kinetic energy.
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CHAPTER III
TWO SCALE K-£-02 TURBULENCE MODEL FOR
BUOYANT FREE SHEAR FLOWS

Flow patterns in nature are complicated due to change in density
caused either by a temperature or concentration difference. The force
produced by this variation is called buoyancy force. In this chapter,
the two-scale turbulence model derived in the previous chapter for
incompressible flow is extended to include turbulent buoyant flows.

3.1 Boussinesq's approximation
and governing equations

For flows where the density gradient is not large, the buoyant force
can be incorporated into the governing equations by making the
Boussinesq approximation. In this approximation [18], the density
variation is considered significant only in the gravitational term. In
other words, the effect of density difference in the conservation of
mass, in the time rate change of momentum and in the work done due to

density changes are considered negligible.

The governing equations for such flows are

isog (3.1)
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DU, BBL | e 32U,
—— R @ — o + E—— ~
Ps Dt axi e =50 u3x.ax. (&2
and
DT* 32T 3 *
Pscﬁz E Kaxjaxj A (3.3)

ale

¢ 1is the heat source due to dissipation by viscous force. ¢ or ¢ and

K are the specific heat and thermal conductivity. The superscript, *

b

-la wle
represents an instantaneous quantity. If Pt and p at the static state
ol

(Ui"=0) are PS and Pgs then the momentum equation becomes

0=-=2+pg +0 (3.4)

Subtracting the two momentum equations (3.2 and 3.4), we have

* *
2
DO thcmgd mad) 11 e ee s, 0] e
Ps Dt axi t s P Ps gi “axjaxj )

With the Boussinesq approximation, the pressure and density relations

are given by

* * %
Po=P =P (o -p)/pg = - B(T - T)) = - BAT

*

where P is the pressure above the static state and TS is the absolute
temperature at the static state. B is the volumetric expansion
coefficient or -l/B(ap/aT)P evaluated at Ts’ PS. The governing

equations, therefore, become



aUI
x, 0
1
* %* %
DU, ap N 32U,
—= = - - BAT g, + v
Dt p_9x, g 3x . ax
s 1
and
#* * T
2507 t,. 3U,
DT _ aa T S R ¢
Dt 3x,9x, pc  3Xx.
i j

ke
[

Tij is the instantaneous

diffusivity or K/psc.

viscous stress and ¢ is the thermal

These equations are exactly the same as the
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(3.6)

(3.7)

(3.8)

equations for non-buoyant flows except that the momentum equation has an

*
additional buoyancy term BAT g;- Letting

U,
i

and taking an ensemble

equations obtained are

14
ax,
DU, aP
l:-
Dt pasxi

and

* %
+ ui; P =P + p; Ti' =1

*
.+t T =T+ 8
J 1] 1]

average of these equations, the resulting

=0
3%y auiuj
- BaTg,+ ”axja - o,

(3.9)

(3.10)
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—_—= = + e AZLE =
Dt ~ %3x.8x, 9x, < pc ix. T pc (3.11)
J 1 1 S 3 s
where
U U, SUl
» = “(ax. ax.)ax,
1 J
The term
aui
'—
(g5 %, * )

may be considered as frictional heating due to the fluctuating and mean
flow motion. This is normally small in turbulent buoyant flows and can

be omitted in most of buoyant flow studies. The above equations have

terms uiuj and uie which need to be modelled. The equations for uiuj, k,

€ and ui§ are obtained in the same way as those in chapter II. The final

form of these equations is

Duiu. 3 2_ 3, u,

= e— - <+ -
BE-—l A% L T8383% " 5 (8, 159 8, %)+ v-——-l] Blg;u 5 * gu u_B]

L Ps 2

. Egi aUl auiaui D Bui §hi

'[“iuzax2 * “j“zaxll ALY %, * oGy, YR (SR
LN 9_ %, oYy
e~ lEp - 5 + v 37] - Bg,6?
Dt axz ps Yoax, X, X,

T aU WA =y
-(uiulg— + 0.8 2 = ) - (a+v)ax = + + ——¢ u, (3.13)

2 2 pasx' Ps© *
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[N aUu
Dk _ 3 .. ii, p. & T g T
De ~ax,l” %(T7 t o) vy Uity 3%,  Peyul - e (Sol6s)
2 s 2 2
De _ 3 — au.aui ) 2vauzap . VEE s van[aulaul f auiau.]
Dt ax 23x,39x, p_9x,93x, ax ax ., 9x,3x, ax, ax
2 33 s j 7] 2 j SLES| 272
su, 32U, su,du,9u, au, ° Ju, a8
i i i 7177 i i (3.15)
'ZV“zax ax_odx, zvax ax_ox, Z[vax ax I - ZBgivE;— X
A A i 272 ] j
where
an
S T
1
and
aui du, BUi an EEi 3ui 3ui Ezi aui
| B — —_— Pl—— U — —
o = MGt 3x,’ax G (8xj i T2 o, (axj * = )3xj

In equations (3.12) and (3.14), each of the terms 'ﬁ(giujs + gjuie) and
-Bg{ﬁ;U-is called the buoyancy production and is a new source term in
the budget of Reynolds stress and turbulent kinetic energy. The
turbulent heat flux pEE;F now assumes an additional role, because it
participates in the production terms for both k and 82. In the E:g
equétion above, the new term due to buoyancy is aéIET which needs to be
modelled as it is an additional unknown. To model it, a transport

[l

equation for is next derived. This equation is obtained by

multiplying the equation for 8 by 28 and taking the ensemble average.

This results in
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Y3 - Az ETEYS
DO =0 . T + oy .oomnil o g RRNER o lomy (3.16)
Dt axl i 8x, L ax2 axgaxz pc

The quantity 82 can be considered as the intensity of temperature
fluctuation. Thus, pcp/ﬁr represents the fluctuating thermal energv. In
82

other words, is to the turbulent heat flux as k or uiui/Z is to the

turbulent stress. In equation (3.16), the rate of change of 82 is
controlled by turbulent and molecular transport of 62 ( the first two
terms on the right hand side of the equation ), the gradient production
( which is like the production term of turbulent kinetic energy ), by

molecular dissipation ( « is the thermal diffusivity ) and the

frictional heating (the last term).

The molecular dissipation of temperature fluctuation (the fourth term

on RHS of equatiom (3.16)) is similar to the dissipation of turbulent

kinetic energy, t€. This term, a(ae/axl)(ae/axl), is denoted by Eg> in
analogy with ¢, and represents the dissipation of the temperature
F!"

fluctuation or the fluctuating thermal energy. £g is an unknown and,

therefore, an empirical relation or a transport equation similar to e-

equation is needed to solve it. Here, the transport equation for &

8 is
derived by differentiating equation (2.5) with respect to xi, then
multiplying it by 2a(ae/ax1) and taking the average. This gives
gl T qa‘e] e T A O Tl
Dt ax 8 "2 ax “%3x. ¥, ax %3x . 9x. ax,

2 2 a1, 2 L i i i
4
2 38 238 328 2 3¢’ 38
2°Lax. ax. ax, 2[“ax 3x.] ) 2a3x. X, LED
i i 2 2771 i
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It should be noted thét &g @ppears only in the §T-equation and hence
plays a less important role than e-equation in the determination of the
mean flow quantities such as Ui’ P and T. For this reason some
researchers [23] employed a simpler, empirical relation to model the
behaviocur of eg to minimize the complexity in turbulence modelling. This
will be discussed in more detail later. For buoyant flows, the terms EIU
appear in both'ﬁzﬁj and k equations and so the turbulent momentum

transfer and thermal energy transfer are now coupled.

All nonbouyant terms are modelled the same as before in chapter II
and so only the modelling of the buoyant terms is given in the next

section.

3.2 Turbulence model

In equation (3.12) for uiuj, the only term that requires additional
modelling is the pressure strain term. To model this term, the
divergence of equation for fluctuating velocity, which is equation (3.7)

subtracted from equation (3.10), is taken to give

2' -
v’p = - [3 “e'm uzum) + z.aU_g‘ a_uh_’ + Bg 38 (3.18)
P axzaxm axm axg 2 3x1

Using Green's theorem, pressure is obtained to be
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2 - T
p_1 [a (@pu - wyu ) . ZEEE du_ g gg_]dvol
P 4m vol 3x.9X ax_ 3Ix °L 3x r
s 1 "m m % L
1 P31 13 P 3.19
L)+ 122 a2
T Js psax T r 3x Py

where the surface integral, the second term on the right side, is
negligible for flows far away from the solid wall. Thus, when the volume
of integration is sufficiently large, the pressure strain term in

equation (3.12) becomes

z—-
R §ui U, = f 3 (uzum ulum) aUz aum 38
L=+ =) = = ( + 2 SnBg W
p_dx, ax, 41 vol 3x, Ix X 3x 2 9x
s j i £ "m m £ 2 .
—u, ou,
( i, ])dvol
3x, 9x r
J
= ¢ij,1 + ¢ij,2 + ¢ij,3 (3.20)

The superscript * denotes the term involving the integration variable.

Here ¢ij
b ]

and third terms in the volume integral. The reason for dividing it into

1’ ¢ij,2 and ¢ij,3 correspond respectively to the first, second

3 parts is that the pressure strain is caused by the fluctuating strain

rate, ¢ij,1’ the mean strain rate, ¢ij,2’ and buoyancy, ¢., ,- The

S1gh [k

d ¢.

modelling of terms ¢i. 13,2 is the same as before and is

an
j,1

- . £ _2 . .2
5,0 % ®55,2 = 7 Cp k(8B 305500 - C(Byy - 3655R)
where
i L R



67

The third term, which is a new term related to the the buoyancy, is

modelled as [20]

©
|

* 9u Ju
1 36 i jdvol
f Bgl i ax ) r

ij,3 4w ax, |9x,
ij ¢ 3%

- j_Zo'—g

= Cy(Bgu;F + Bgu.B - 383.u 0]

. .2

= - CalPyy,p - 39:5F!
where

14,b = 7 P&u;F - Bg;u,®
and
Pb = - Bgiuig

The RHS of this equation is the return-to-isotropy part due to buoyancy
and is similar to ¢ij,l’ which is the return-to-isotropy due to velocity
fluctuation. These models are obtained by contracting the volume to a
small value and ensuring that when the flow is approximately

incompressible or i=j the pressure strain is zero. Hence the modelled

uiuj-equation is

Duiu. 3 = 73 auiuj . Vauiuj] - b ] 25 ] (3.21)
Dt ax2 k e 3x 3ax ij ij,b 371j
2 2
n
Cp wlEi%y = 3834k] = ColPyy = 58,4B) = CalPyy = 38;4P,]
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The modelled k-equation can be directly obtained from the above equation

by substituting i=j and summing to give

Dk _ 3 k*3k | 8k . _ I
bt = ax, Ok £ ax, * Vax,) T Uit 3k, P850 - (3.22)

3 3 3 illhe

It should be remarked here that except the first term on the right side
of equation (3.22), which is modelled, every other term in the equation

is exact. In modelling the e-equation (3.15), the new gravitational

term ZBgiv(aui/axj) (ae/axj) is set approximately equal to zero due to
the postulation of isotropic dissipation for small eddies. However, the
destruction terms, the last two terms in equation (3.15), are modelled
based on the two-scale concept to include the influence of buoyancy.

This is based on Lumley's assumption that the destruction term is

du, 3u, Jdu a%u, 2
vt =2 1 . ppv—2 )" = Constant % (E(REedefk
axj 8xz axg axzaxz t €

Here the production of k comprises of both production due to shear
force, Pk’ and buoyant force, Pb’ in equation (3.22) and t is the time
scale of destruction. Thus, based on the two scale turbulence model

concept

aui su, Egi 5’ui 2 1
= _— = - . = * = =
2v . : X Z[vaxgaxll Constant [t][Pk + Pb £]

= Constant * (a/v)%[Pk + Pb - g]

where
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3l
] ——l = - -
. Pk RN 3x2 and Pb BgiuiE

Here, again the time scale, t, is based on Kolmogorov scale and not the

convective scale (k,e) for large eddies. Therefore, the final modelled

€-equation is

3U
De 3 k?3¢e 3e . 74
P 5 o T a3 tviz-] - C (g/v)'uu,
Dt ax2 L ax2 axl el ij axl
= (B (s/v)%s + C (a/v)%P (3.23)

2 €3 b )
The exact uiE-equation is
Dui =a__uue..6.P_e aué_e._.'.vi:-s.g!
Dt ax, L ety it p Lax ax &

) L L
__ T _an aui3§ T30 1
-(uiu23;2+ uzesgz) - (a+v)axzax2 + paxi+ ;c¢'ui (3.24)

The last term in equation (3.24) is the frictional contribution to EEF
which is normally small and will be omitted in the study. The only term
that requires additional modelling when buoyancy prevails in equation
(3.24) is the pressure strain term which is obtained by multiplying

equation (3.19) by ae/axj and taking an average, or

— R e
230 _1 f *wae % pae o 20" 20 dvol -
p 3x, 4m Vol'ax dax  9x, 3x_ 3x, 3¥x, 8 3x, x.! ¢ e
i £ "m i m 2 i 2 i
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Shrinking the integral to a small volume, this term may be approximately

set equal to

S=ate ToTZ s e
DA _ ool s [a wu e . zaU,[n “m 38 gy 28 28 192
p 99X, 9x,9x  3x, ax 3x, Ix, € 3x, ox,
i £ m i m 2 i 2 i
€ an hrov 4
== Cpy 157 * Cpp axm“mé - Crsfs;8

Hence, the modelled ﬁ;g-equation is

Du_6 23u.8 3u. o 3U .
B = o lCr s e t o] - i3, e 4 T8t
Dt Bxl T ¢ 8x2 3xz i axl 2 axg
. U, -
" C11 1850 * O E;“mg - (1 +Cp5)Bg,8 (3.26)

——

The 6%-equation in exact form is

YE ) 3630
DE = [ -+ - ool N g, 3UmAL | e (3.27)
Dt ax2 i 3x ) axz axzaxz pc

The diffusion term is modelled according to postulate 2 in the principle

of modelling outlined in chapter II to be

= 2 o S
ule C

Letting the friction term, ¢'8, to be negligible, the modelled

8%-equation is

D62 _ @ k2 367 —3T
el axz[(ce £ * “)axll ) 2u9.eax2 - 258 (o)
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It should be remarked that the g term in the above equation is an
unknown and can be modelled by an empirical relation such as equation
(3.28a) based on Launder's suggestion [20] or by solving a transport
equation. For most practical cases, it is sufficient to use such a

simple empirical relation by assuming that Eg is a function of e or

92
= = 2
Eg Cel X £ (3.~§§)
where Celis a dimensionless constant and 82/k is required to make the

dimension consistent. For more rigorous modelling, the exact equation

for se can be derived as

Efg=a___s.u+ﬁ_2awzae 30, 3T 38 oy
Dt Ix 6 ¢ “ax Ix, 3Ix, 3x “ax. Ix, Ix,
A 2 i i 2 i i i
Ju
L 39 238 329 3 3¢’ 30
2uax. Ix, ax, 2[“ax ax.] i 2<J‘Iix. 3%, (3.29)
i i A A i i
The diffusion term is modelled as
e
7 k"8
o U T Ce £ axz

The ,production term is small due to isotropic dissipation and

incompressibility. Hence,

The terms



72

8 o, PR TSI T
9X, 9X. 9X. 3X,
1 1 s pU

are also small due to isotropic dissipation. The destruction term is

modelled based on Lumley's assumption. Thus

au £ ==
2 38 38 3?8 P - 4 =B PRSE g 8¢
B Z“ax. ax., 3X N 2[“ax ax.] S ECTIEE = [t I £ - 1]
i bl 2 2 71 8

In the present investigation of the two-scale turbulence model, the time
scale in the above equation is taken to be that of the destruction term
in the e-equation namely that of Kolmogorov scale [t] = (v/z)%

Destruction of se is modelled as

g PRESEE Ty
N 2“‘ax. 3x, ax 2[“ax ax.] = Cel(s/v) uzéax Cez(E/V) €q
i i L [ 2

Therefore, the modelled £g equation is

De de
8 ] k? 8 ——EGT ﬂ
bt Coax, e TVl C Coy(eMITT - o emte, $hel)
2 2

Summarizing the complete two-scale turbulence model for buovant flows,

the equations for the turbulent quantities are

Duiu 3 = auiuj auiuj 2
T EEZ[Ck t x, * Vix, 1 = Pyq ® Pyyp ® 30448 (S22
¢, & 25 k] - C.[P 25 P C.[P 25 p
1 EVREE; TagPigkl | EglPag © g8g Eiel = e5i 23,8 - 8 ugwl



Dk _ 3 . Kk?3k 3k
Dt ~ 3x, "k & 8x, © Vax,| ”
2 £ )
De _ 3 k?3e 3 _
Dt - ax, e & 3x, T Vax Cer(8/V)
L 2 £
3

ng(s/v) t + CES(s/v)%Pb

the, — i__[c k4 i
Dt axg T ¢ axz axg
£ an
Cr1 k%40 * o x_

D62 _ 3 k2 382

bt - ax, [(Cg g * Vgl - 2u 85— - 2

2 2

8 _ 3 K2 b=

£

-9 _.3_ k _8, . 33T 3
Dt [(Ce + V)axz Cel(s/v) L_l;fgax‘z' Ce2(s/v) EB

In addition to incompressible turbulent flow equation for W.u., k
and uiﬁ, two additional equations for B2 and ¢
buoyant flows. Also, in addition to 9 turbulent coeffecients C
Cs’ Csl’ CEZ’ CT’ CTl and CTZ needed for nonbuoyant flows, 6 more

coefficients are needed in the turbulent buoyant flow prediction,

namely, C C c, C

3> Gz O30 Cps €y

3T
Tl I [uiui Ix +

- 2
u ¥ - (1 +CpyBg 8

i
el

are needed in the

(3.

(3.

(3.

(3

(3

1,
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23)

26)

.28)

.30)

€

C2,
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3.3 Governing Equations for turbulent
free shear flows with buovancy

For two-dimensicnal turbulent free shear flows, the above governing
equations can be simplified considerably. The assumptions made in
obtaining turbulent free shear flow equations are

1. Diffusion in the direction normal (y coordinate) the flow is much

. larger than the diffusion in the direction parallel (x
coordinate) to the flow.

2. Pressure gradient is small in the flow.

3. Laminar shear stress is much smaller than the turbulent shear

stress.

4. ﬁoussinesq approximation applies.

5. Frictional heating is negligible.

With these assumptions, the mean equations (3.9), (3.10) and (3.11)

for turbulent Shear flows under Boussinesq approximation are

3U _ av _
ax Tay = © (3.31)
T-T
Uax + Vay 3 ay[y uv] + g T (3.32)
y a
and
R I N a2 (3.33)

3x 3y Yj dy



where Ta is the ambient temperature. j=0 for plane flows and j=1 for
axisymmetric flows. Equations for the turbulent quantities reduced from
equations (3.21), (3.22), (3.23) and (3.26) with the x-direction aligned

to the gravitational vector.

3V | 8Uv _ 1 3 . j. kvidWy, 23U
=5 — o e e [ xr e ——— - — -
Lax * Vay yj ay[} Ck £ 3y ] uvay Bgve
£ — —3U .
- C1 Euv + C7uv5§ + nguBB (3.34)
3k . 3k _1 8 5. kv¥ak, | —aU _ W _ ]
Uax + \ay = yj 8y_[y K e ay] uvay + oTa £ (3.33)
de 88 _ 108 . kvidk 3 _=—3U
Vax t Vay T o 3y 7 Ce ¢ 3yl + G (e/v)7 (cuvgs
+C 3(5/»)*#—9 - csz(e/v)*s (3.36)
a
WO | AUF _ 1 3 . kv'3EH,  —3T _—aU
U = ay VS T 3y | T Way T Vo5
(1 - C.)_
- Cpy £90 + Crzﬁ'g'g + g—T—Ti—e2 (3.37)
a
30Z | 382 _ 1 3 . 3. kv2ag? — 3T 82 -
Uax + Vay = ay[y Ce oy ] - 2v6a Cel K (3.38)

It should be remarked that since the term 82 appears in equation (3.37),

a transport equation for 82 is used. In equation (3.38) an

approximation for Egs &S suggested by Launder in equation (3.28a), is

made so that an equation for € is not required.
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It is necessary tc solve all the above equations to complete the
prediction of turbulent buoyant shear flows. However, a considerable
amount of computational effort would be required to solve the whole set
of equations. Therefore, some simplifying assumptions are further made
to reduce the number'of differential equations to be solved. One such
assumption is to neglect the convective and diffusive transport terms of
ﬁ;ﬁ} and'ﬁzﬁ equations. This leads to the following approximated

algebraic relations for the av, vZ, v6, ud and 82 terms.

1 -¢C 2 ’ 2
—— 2 v kg (3T/3y) k23U
avE —= - [1+ = = (3.39)
C1 k CTlsTa(aU/ay) g€ dy
vI = C,k (3.40)
= vik2
-ve=c_1-§§? (3.41)
T1 ¥
(1 -CL)
<.k (=3 _ = F T3)=r
ub c a[ uvay ve (1 CT?_)ay g———ﬁr————e ] (3.42)
T1 a
37 - . Kk _—=3T Jr—
8 Celsveay (3.43)

In the present investigation, these algebraic equations are solved with
two-scale k and ¢ equations in differential equation form. This
simplified turbulence model is known as the two-scale k-t model and is
perhaps most practical model for predicting details of mean motion and

turbulent transport properties.
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3.4 Determination of coefficients

Most of the coefficients in the above equations have been derived in
chapter II and so only the two additional coefficients CT3 and Cel

required in solving buoyant free shear flows are discussed here.

3.4.1 Coefficient C81

This coefficient is obtained from experimental data of temperature
fluctuations behind a grid. Figure 3.1 shows the decay of 8% measured by
Gibson and Schwarz [24]. From this figure, 8% is found to vary inversely

as the three-halves power of distance behind the grid.

For such a flow, the ai-equation [equation (3.38)] becomes

do? _ 82

U= = 2Cq, 85 (3.44)

Non-dimensionalizing this equation with the variables
reX oo koo Th 82
X M’ k U 2> E U Z/MJ e T2
o o

the following equation is obtained.

462" - ENG -

& L= ZCel k,e (3.45)

In section 2.4.1, k and £ were found to be

L. 450 1'1

S X and g' = 20 172
40000 40000

Further, from figure 3.1, the relation between 82' and x' is found to be
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Figure 3.1. Decay of [E measured

by Gibson et al.
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Szt 1

82" = 3.1x' >

Substituting these in equation (3.45) gives

3 1=2.5 450 1 =2 ,40000, , v=1.5
- 3 =T - ———t S o+
) 3.1%x 2C81(40000)x ( 450 Ix (3.1*%x )

This results in

C =

61 = 0.75

£l

the commonly used value of Cel is 0.62. This is, however, obtained from
Launder's assumption in equation (3.28a). In the present investigation,
a value of 0.75 will be used.

3.4.2 Coefficient CT3

This coefficient is generally set equal to C {20] which has been

T2

obtained earlier in chapter II to be 0.5. Hence, a value of 0.5 is used

for CT3'

3.5 Concluding remarks

In section 3.3, it was mentioned that due to Launder's argument, the
equation for Eq Was replaced by an algebraic relation. Hence, the
structure of the turbulent heat flux EE is represented by only the (k,ec)
scale only. In flow situations, where tq might be an important
parameter, the need for solving the complete se-equation [equation

(3.30)] would be important. This would bring in the influence of the



two-scale concept or the effect of viscous dissipation in the thermal

dissipation or destruction £q in the turbulence model.

80
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CHAPTER IV

REVIEW OF EXPERIMENTAL WORK

4.1 General remark

This chapter briefly reviews various experimental data for free shear
flows. The types of flows considered are jets, wakes, mixing layers,
coaxial jets and buoyant jets. Reliable experimental data are selected
for comparison with the predicted solution obtained from the proposed
two-scale turbulence model. Table 4.1 shows the definition of the
spreading rate, S, for different flows which will be used for comparison
later. This rate of spread is a gross parameter independent of the
distance x. The symbols used in the definition of S are shown in figure
4.1. In addition to the rate of spread, detail of velocity and other

profiles are given in the following section.

4.2 Jets flowing into stagnant surrounding

The gross parameter of importance to the jet flows is the spreading

rate, S, which is defined as

d
Shi 4
dx
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Figure 4.1. Definition of symbols.
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Table 4.1

Definition of spreading rate S

Flow S
Jets dy,/dx
2
Wakes (UE/wo)[dy%/dx]
Mixing Layers d(yO s " Yy 9)/dx

Here, yé is the normal distance from the jet axis where the axial
component of the velocity is one-half the centerline velocity Uc' The
spreading rate S is found to be a constant when the flow becomes self-
similar in the far region. The definition of self-similarity or self-
preserving is that the profile or distribution of dependent variables
are similar from one station to another and become identical when they
are made dimensionless by the local reference quantities. It should be
remarked that experimentally it is found that although both profiles of
the mean flow variables and turbulent transport quantities become
similar the former usually occurs first. It is also found that the
initial condition at the nozzle exit affects only the near jet region.
Therefore, the rate of spread and various profiles far downstream are

the same regardless of the inlet conditioms.

4.2.1 Plane jet

Table 4.2 summarizes the important flow parameters measured for plane
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jet by several investigators [25-29]. ‘The range of experimental data
was between 5 and 130 times the nozzle width. Iu each of the cases, self
preservation started at a different location downstream of the nozzle.
This could possibly be due to the different initial conditions such as
velocity profiles or turbulent intensity level. Nevertheless, the rate
of spread, center-line turbulent kinetic energy and the maximum shear
stress in the self preserving region obtained by various investigators
are about the same. The results of Bradbury {25}, however, showed that
self-similarity was not reached and the rate of spread continued to
fiicrease beyond a4 distance of 70 nozzle widths. One reason for this was
that in Bradbury's experiment the surrounding air was not stagnant. Rodi
[4] also found that jets.flowing into moving surroundings are only
approximately self-similar. However, Bradbury [25] indicated that by
reducing the velocity of the surrounding air the velocity and the

turbulent kinetic energy do not change appreciably.

Figure 4.2 shows the velocity profile in the self-similar region of a
plane jeu obtained by Bradbury [23], Heskestad [26], Patel [27], Gutmark
28] and Robins [29]. Except for a small region near the edge of the
jet boundary, there is close agreement between all measurements. Eence,
it provides a good test for a turbulence model. Figure 4.3 gives the
profile of turbulent kinetic energy k in the far region as obtained by
various investigitors. There is a large amount of scatter in these

results. Gutmark's results seem Lo be inaccurate since scme

n
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Table 4.2

Parameters for plane jets

Investigator | Bradbury| Heskestad Patel Gutmark Robins
Nozzle 46 * 951150 * 1.25| 80 * .7 |50 * .13 --
size(cm)
Range 14-70 47-155 12-152 10-150 5-100
x/D
Reynolds 30,000 4700~ 35,000 30,000 10,000-
number 37,000 60,000
Self-pres. 30 65+ 30 120 60
x/D
S -——- 0.11 0.103 0.102 0.103
Maximum
Reynolds 0.026 0.021 0.021 0.024 0.02
stress
Max turb
kinetic 0.067 0.07 0.064 0.077 0.064
energy k

abnormalities were reported by him in his experiment that the velocity

decay had an abrupt change at x/D=65 and the dissipation rate was only

20 % of the production of turbulent kinetic energy. Heskestad's results

indicated an increase in the value of 1_1:2/Uo2 even beyond 160 nozzle

widths. Also, Bradbury indicated that his measurements of v? > uZ
physically unlikely.

shown for comparison purpose.

»

smaller than that of Gutmark, Heskstad and Bradbury.

seem

Experimental results of Patel and Robins are also
In general, their measurements are

In figure 4.4,

Bradbury's measurements of the Reynolds stress are shown at two
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different locations. The maximum value of Reynolds stress is 0.026 which
is slightly higher than that of other investigators quoted in table &4.2.
A plot of the centerline velocity decay along the jet axis is given in
figure 4.5 as obtained by Bradbury et al. [30] and Van der Hegge [31].
From this figure, the potential core length or zone of development is
estimated to be about 6 times the exit jet width. Bradbury's data shows
a lower decay rate than that of Van der Hegge. This slight difference
in the two results could be due to different inlet and free stream
conditions as it is known that by changing the inlet turbulent kinetic

energy, the length of the core will vary.

4.2.2 Round jet
Table 4.3 shows some of the gross parameters obtained by Hetsroni [32],
Wygnanski'and Fiedler [33], Rodi [4] and Shearer and Faeth [34] for a
round jet. The measurements for mean quantities by Hetsroni and by
Wygnanski were done up to a distance of x/D=35 and 40 respectively.
Shearer measured the flow quantities up to a distance x/D=510 and the
measurements were slightly different from the other two investigators.
It is, therefore, assumed that the initial condition still has a
significant influence on the measurements at x/D=40 and the flow profile
may not reach the self-similar condition. Hence, Shearer's results are

assumed to be more reasonable. For comparison purposes, the latter

result will be used.

The velocity profile is shown in figure 4.6 where there is a small

variation between the measurements of Wygnanski and Shearer. The
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difference could be explained by the lack of similarity at x/D;AO. This
discrepency in the result is further amplified in the measurement of the
kinetic energy as shown in figure 4.7. Wygnanski and Fiedler obtained a
value of 0.1 for the centerline kinetic energy at a distance x/D=40.
However, Shearer's measurements indicate a value of 0.08 at x/D=510.
This value seems to be more reliable and realistic because the
measurements were taken sufficiently far away where the jet is most
likely self similar and there is no influence of the inlet conditions.
The variation of Reynolds stress is shown in figure 4.8. Here, too, the
measurements of Shearer are slightly different from those of Wygnanski
whose data is for x/D=60 and 70. Some scatter of data is obvious from
the figure. The decay of centerline velocity for a round jet is
presented in figure 4.9. Along with the data of Shearer and Wygnanski,
the measurements of Corssin [35] are also provided. These data are more

agreeable, though the measurements of Shearer start from x/D=50.

4.3 Plane wake

One of the important global parameters for the wake flow is the

spreading rate of the wake. The spreading rate for the plane wake, S, is

defined as

w»n

W
o% e
B &

Here, y, is the normal distance from the symmetry line to the location
2

where the x-component velocity U is (Uc + UE)/Z. Uc and U_ are

E
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Table 4.3

Parameters for round jets

Investigator | Hetsroni | Wygnanski Rodi Shearer
Nozzle 2.5 2.6 1.29 0.1194
size(cm)
Range 15-40 40-98 62-75 170-510
x/D
Reynolds --- 100,000 87,000 ---
number
Self-pres 15 7Eh 62 _—--
x/D
S 0.0713 0.086 0.086 =1~
Maximum .
Reynolds ——- 0.0165 0.0186 0.0195
stress
Max turb -
kinetic --- 0.101 ———— 0.078
energy k

respectively the velocity at the symmetry line and the free stream line.

w, is the defect velocity or (UE g Uc).

Extensive measurements have been made, over several decades, in the
wakes of two-dimensional bodies. Data is available both in the near wake
and far wake regions. The earliest one was by Chevray and Kovasznay
[36], who measﬁred the mean velocity and turbulence quantities in the
near region of symmetric wake of a flat plate. They measured the
spreading rate and obtained a value of 0.062 but this value was still

increasing with x. Their spreading rate measurement did not agree well
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with that of others who obtained values ranging from 0.09 to 0.11. The
disagreement is due to the fact that the wake was formed behind a
streamlined body which may influence the wake structure. Patel [37]
observed that it takes a distance of 3000 for a wake to become self-
similar. Therefore, a change in the initial condition at the trailing
edge before wake formation could influence the mean and turbulence
quantities in the wake region for a considerable distance downstream. A
physical explanation for this behaviour is that unlike jet flows the
production of turbulent kinetic energy is low in the wake flow and
dissipation is high. Therefore, the initial or the upstream conditions
for the wake must be accurately prescribed if one hopes for a meaningful
comparison between the prediction and measurement. In particular, the
turbulent kinetic energy level and the shear stress may be influenced by

the initial conditions far downstream.

Comparisons between prediction and measurements were limited to the
decay of center-line velocity deficit. However, recent measurements by
Andreopoulos [38], Pot [39] and Ramaprian et al. [40] provided abundant
experimental data for comparison with the prediction based on turbulence
models. The measurements of Andreopoulos and Ramaprian were done in the
near wake region while those of Pot were in the asymptotic region for
flow past a flat plate. Hence, their data provides a good test for the
performance of the two-scale k-&¢ turbulence model in both the near wake
and far wake. Table 4.4 summarizes some of the work done in recent

years. Figure 4.10 shows the asymptotic velocity deficit profile
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obtained from the asymptotic theory along with the result of Pot. There
is a slight difference at the edge of the wake which is probably due to
the fact that the flow is not fully turbulent in that region. In figure
4.11, the Reynolds stress profile is shown and compared with the
asymptotic solution. Except for a small region near the edge of the
boundary layer and around y/y% of 0.90 , the solution lies on the data
points. The measurement of the centerline velocity deficit variation
with x/8 is shown in figure 4.12. 8 is the momentum thickness based on

the velocity profile at the trailing edge of the flat plate.

Table 4.4

Parameters for plane wake

Investigator | Chevray Ramaprian| Andreo Pot
Kovaszny | et al. pelous
Body flat flat flat flat
plate plate plate plate
Range 0-207 10-79 0-43 3-948
x/0
Ree 1580 5220 13600 2940
S 0.062 0.12
Max Rey 0.05 0.05
stress
Max Turb 0.07 0.18
kinetic
energy
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4.4 Plane mixing laver

Table 4.5 summarizes the experimental data measured by various
investigators [41-46]. The spreading rate, S, is defined as

1091 = Y99
s = 20" Yo,

where yo'1 and Y0.9 are respectively the normal distance from the
dividing plane to the location where the X-component velocity is 0.1 and
0.9 of (UI S UE). Both Reynolds stress and turbulent kinetic energy are
normalized with (UI - UE). It can be seen from the table that there is
a large variation in the spreading rate. This is a major source of
concern in recent years [46]. However, recent data by Husain and Hussain
[47] indicates that an isolated mixing layer does reach a unique

asymptotic spreading rate.

Nevertheless, the developing region of a mixing layer is not very
well understood. This is due to complex interaction of the two wall
boundary layers and the two shear layers. For calculation purposes, it
is important that well defined initial conditions and sufficient
turbulence measurements be available to characterize the main features
of the flow. Also, the data should cover the complete mixing region. At
present, no totally satisfactory set of data is available. However,
some of the measurements of the velocity are shown in figure 4.13. Most
of the data falls on one curve indicating that the results are in good

agreement. These results were obtained under different conditions at
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Table 4.5

Parameters for plane mixing layers

Investigator |Wygnanski|Liepmann Patel Sami

Dimension] 51 * 18 [152 * 19 | 76 * 43 | 30 dia.
(cm)

Range 58 90 100 450
x/D

Max Re 465,000 | 1,100,000{1,800,000]| 660,000

S 0.2 0.16 0.165 0.163

Maximum

Reynolds 0.0091 0.008 0.01 0.0109.
Stress

Max turb
kinetic 0.035 0.02 0.0275 ==
energy k

the start of the mixing layer. Measurements of Albertsqn et al. [43] and
Sunyach et al. [44] were in the initial region of a plane jet while Sami
(45] and Bradshaw [46] obtained data in the initial region of a large
round jet which is approximately considered to be two dimensional. 1In
figure 4.14, the kinetic energy profiles of self similar mixing layers
are shown. Unlike the velocity profile, there is a large amount of
scatter and, thus, it is difficult to say which data is more accurate.
Part of this discrepency is due to the variation in the initial

condition.
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4.5 Jets flowing into a parallel moving stream

Unlike the flow of jets into stagnant surrounding, this type of flow
is known to be approximately self-similar. Due to the presence of the
moving fluid in the surrounding, the flow has two distinct
characteristic regions. Close to the jet or the near region, the

centerline velocity Uo is much larger than the free stream velocity

UE,l.e.

U
e

g

>> 1

Therefore, the mean strain rate is high. In this region, the flow
properties are similar to that of a stagnant jet. Far downstream, the

jet centerline velocity is only slightly larger than the free stream

velocity,i.e.

9]
=2 =1+5

Vg
where 6 is small. Hence, the strain rate is weak and the velocity
profile resembles an inverted wake velocity profile. This region is

sometimes termed the 'wake like ' region.

Due to the change in the flow characteristic from large strain rate
to small strain rate, jets flowing into moving stream provide a good

case for testing a turbulence model.



107

4.5.1 Plane jet

Although the spread of turbulent jets issuing into parallel moving
streams has been the subject of a number of theoretical treatments [48],

reliable experimental data on these flows are still comparatively

 sparce.

Figure &4.15 shows the velocity profile measurements made by Bradbury
et al. [30] for several ratios of UE/(Uo - UE). Since the centerline
velocity decreases with x, these ratios effectively correspond to
different x locations in the flow field. All the profiles coincide into
a single curve indicating that the flow is approximately self-similar.
In figure 4.16, the centerline velocity decay is shown. In both the

figures, the ratio of the free stream velocity UE to the nozzle velocity

UN was 0.3.

4.5.2 Round jet

Figure 4.17 shows the plot of mean velocity profiles at three
different stations as obtained by Antonia et al. [49]. All velocity
profiles fall into a single curve, indicating that the mean flow is

almost self-similar. The ratio UE/UN for this data is 0.3.

In figure 4.18, the Reynolds shear stress is shown for various
locations of x/D ranging from 38 to 248. There is a considerable amount

of scatter at y/y% < 0.8. However, the shape of the data curve is

similar and has a peak at about y/y%=0.8.
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4.6 Buovant jets

The turbulence model for the prediction of the turbulent buoyant flow
is given in chapter III. In order to verify the model, some reliable
experimental data is necessary. The existing turbulence models do r~t
predict the mean and turbulent quantities close to experimental data
unless the model constants are altered. Chen and Rodi [50] have
collected available data on buoyant jets which can be used to verify the
performance of the two-scale model. Unfortunately, experimental data,
especially the turbulence quantities, for buoyant flows are not

sufficient for an accurate test of the model.

4.6.1 Plane buoyant jet 3

Table 4.6 shows the plume region of buoyant plane jets. The modified
Grashoff number, which is the product of the Grashoff number and the
heat flux, ranges from 3,900,000 to about 966,000,000. The Grashoff

number is defined as

g(p

where
pa=ambient fluid density,
po=f1uid density at nozzle exit
v =kinematic viscosity

D =jet width or diameter

The rate of velocity spread which is defined as
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1]
b

is measured by the various investigators to vary from 0.095 to 0.147.

The recommended value is 0.12. The thermal rate of spread is defined as

dy
o = Ty
T dx
where Yyp is the location where the temperature is one-half that of the
2
centerline temperature. From the temperature measurements, the thermal

rate of spread has been obtained by most investigators to be around

0.13.

Table 4.6

Gross parameters for buoyant plane jets

Investigator Rouse |Kotsovinos { Harris Anwar
Modified 39 470 9660 =
Gr No.
*10°%
Froude o 1.4-5.9 4-193 16-100
No.
(x/D) 650 43 70 50
S .15/.14 .095 - -
Thermal
Spread .13/ .14 .12 .135 .131
rate
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The velocity and temperature profiles for a plane jet are shown in
figures 4.19 and 4.20. The first figure is for a pure jet measured by
Bradbury and Van der Hegge while the second is for a pure plume obtained
by Rouse et al. [51]. These are two extreme cases of a buoyant jet.
The centerline velocity according to Chen and Rodi [50] can be divided
into three distinct regions in a buoyant jet, namely, the near or the
non-buoyant region, the intermediate region and the plume region. In
all the three regions, the experimental data lies closely to the
theoretical lines which are obtained from similarity analysis. Hence
the profiles at all Froude numbers should lie between those of pure jet
and pure plume. Figure 4.21 shows the Reynolds shear stress for plane
buoyant jets obtained by Ramaprian et al. [52]. Their measurements
around y/y%=1 shows some scatter. In figure 4.22, the turbulent normal
stress distributions measured by Kotsovinos [53] and Bradbury [30] are
shown. Bradbury'§ data is for a pure jet while Kotsovinos's
measurements are for a pure plume. It can be seen that the turbulent

intensity in a pure plume is much larger than that in a pure jet.
4.6.2 Round buoyant jet

For a round buoyant jet, Table 4.7 summarizes the gross parameters
obtained by different investigators. The modified Grashoff number varies
from 10° to 10'°. The rate of velocity spread varies from 0.084 to
0.12. The recommended value is 0.112. The value suggested for the

thermal rate of spread is 0.1.
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Table 4.7

Gross parameters for a buoyant round jet

Investigator Rouse George Abraham
Modified 1.38 13.3 4.53
Gr No.
9
*10
Froude o .714 1.82
No.
(x/D) 75 16 26
S .084 .112 =
Thermal
Spread .098 .104 =
rate

In figure 4.23 the velocity and temperature profiles are shown for a
pure jet where the Froude number is infinite. The data is obtained by
Rodi for velocity and Ruden for temperature. On the other hand, figure
4.24 shows the velocity and temperature distributions obtained by George
et al. [54] for a pure plume where the Froude number is 0. The
turbulen; kinetic energy in buoyant jets is shown in figure &.25.

Rodi's measurements are for a pure jet while George's measurements are
for a pure plume. Unlike the plane buoyant jet, there is a aecrease in
the turbulence intensity for a round jet due to the presence of

buoyancy. Hence, more experimental data is needed before a meaningfull

conclusion of the accuracy of the turbulence model can be made.
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4.7 Summary

From the experimental data reviewed above, it can be summarized that
though the amount of data is enough to adequately test a model, it is
still not complete. In most cases, there is no experimental data of
turbulence quantities at the inlet, thereby making it difficult to
compare the prediction of flow near the initial region particularly in
the near region of the wake flow. Also, in wake and jet flows, the
turbulence at the inlet influences the velocity and kinetic energy in
the near region. Therefore, small discrepencies between experimental
data and numerical calculation using the turbulence model may not
indicate that the model is unsuitable. Due to lack of initial condition
some trial and error or guess of initial turbulent condition during
computation is necessary in order to examine or compare the experimental

data with numerical results in some region of the flow.

In chapter V, the prediction based on of the two-scale turbulence
model for nonbuoyant flows is compared with the experimental data.
Chapter VI contains a comparison of the results of the two scale model

for buoyant flows and experimental data for such flows.
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CHAPTER V

PREDICTION OF TURBULENT NON-BUOYANT FLOWS

This chapter presents the results obtained by the two-scale
turbulence model for non-buoyant flows based on equations (2.2), (2.3),

=0.9,

(2.11), (2.12) and (2.13) with the turbulent constants of Ck

% 1
C1=2.8, C.=0.47, Cs=2'00’ Cs =17.5/(Re)*, Cs =18.9/(Re)*, C.=0.13,

2 1 2 T

CT1=3'2 and CT2=0'5' The predicted results are compared with the
experimental data discussed in chapter IV. Furthermore, prediction of
the one-scale turbulence model is shown and compared. For the one-scale
turbulence model, instead of equation (2.12) for &, equation (1.10) is

used and instead of C,=0.9, Cs=2'00’ Ce =18.9/(Re)%, the

k 1 2
values used are 0.225, 0.15, 1.435 and 1.92, respectively.

=17.5/(Re)%, Cs

As mentioned earlier, the selection of turbulent free shear flows as
the first type of flow to verify the predictability of the turbulence
model is based on the following considerations. First, there is
sufficient data available for comparison for both mean velocity and
turbulent transport properties. Second, the pressure gradient in free
shear flows is negligible so that the pressure gradient will not play a
major role in determining the flow field. Therefore, the prediction of
the free shear flow field is most sensitive to the modelling of the

Reynolds stress, turbulent kinetic energy and its dissipation. Third,
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the complexity of the near-wall turbulence is absent in free shear
flows. Therefore, the error in the approximate treatment of near wall
turbulence can be excluded from the problem and the accuracy of the
turbulence model can be carefully examined. Fourth, although it is
secondary, the numerical procedure in calculating turbulent free shear

flows is simpler than that in wall shear flows or separated flows.

5.1 Numerical procedure

The equations derived in chapter II for free shear flows are
parabolic in nature and so the GENMIX program developed by Patankar and
Spalding [55] is used. The program has been modified by Chen and
Nikitopolous [23] and Chen and Chen [56] to include the governing

-3
equations for k, € and 8

Briefly, in the computation, the two coordinates chosen are the x and
'Y coordinates instead of x and y coordinates. The governing equations
are transformed from the x-y coordinate system to the x-Y system. Thus

-7
the governing equations for U, T, k, € and 8 are cast in the same form.

The initial conditions are épecified for U, T, k, ¢ and-;T at x=0. These
conditions for each flow are given later in the individual section
describing the flow. The inner boundary conditions are the symmetry
conditions for jets and wake. For the mixing layer, the free stream

conditions apply at the inner side. The outer boundary conditions are

zero or constant velocity and no turbulence.
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The solution at each section normal to the mean flow direction is
obtained by using an implicit method. The marching step Ax at each
station is calculated from various flow parameters. The grid size Ay is
0.01 times Ax. A total of 40 points are chosen in the cross-stream
direction which is verified by Chen and Nikitopolous [23] to provide
grid independent solution.

The calculations were performed upto a maximum distance of x/D=75 for

jet flows and x/86 of 600 for wake behind a flat plate.

5.2 Prediction of gross parameters

The first thing to be concermed with is the prediction of gross
characters of the flow field. For this the spread parameter is chosen.
When a model is not capable of predicting an accurate spread rate for
free shear flows, it is not very meaningful to examine further the

details of flow and turbulent structure in the flow.

Table 5.1 shows the spreading rate for various non-buoyant flows.
For jets, the spread rate S is defined as the slope of y% in the flow
direction, where y% is the location in the normal direction of a point
where the U velocity is one-half the centerline velocity, i.e. U%=0.5Uc.
For wake, S is the spread rate times the free stream velocity, UE’ and
divided by the velocity defect, w,s or (UE = Uc) as defined in figure
4.1. In the case of the mixing layer, the spread rate is obtained in
terms of the width of the mixing layer. The width is defined as the

distance between the edges of mixing layer where the velocity is 10% and
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90% of the free stream velocity. From Table 5.1, it is seen that the
values of S predicted by the one-scale model for round jet and plane
wake without altering the turbulent constants are significantly
different from the experimental data while the two-scale turbulence
model predicts satisfactory results for all cases calculated. This
demonstrates that the two-scale turbulence model indeed provides better

prediction than the one-scale turbulence model.

Table 5.1

Spreading rate S

Flow Spread One Exp. Two
Type Parameter scale data scale
Round dy 0.1189 0.08 0.081
e '
jet dx
Plane " 0.1125 0.11 0.109
jet
Plane " 0.068 0.098 0.0975
wake
Mixing i 0.159 0.16 0.15
layer

5.3 Jets flowing into stagnant surrounding

As mentioned earlier, jets flowing into stagnant surrounding become
self-similar far downstream. For mean quantities, it should take a
minimum of 40 diameters to establish self-similarity and about 60 to 70
diameters for turbulent quantities depending on the initial conditions

at the jet exit. In the near region, the flow parameters are dependent
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on the initial conditions like the velocity and turbulent kinetic energy
at the jet nozzle. It is necessary to compare experimental data and
prediction for both near and far regions in order to verify the accuracy
of the one-scale and two-scale models. Unfortunately, most of the
available data do not provide complete information about the initial
conditions prevailing at the nozzle such as, velocity profile, turbulent
kinetic energy or dissipation. This could lead to differences in the
decay of centerline velocity and turbulent Reynolds stress or

dissipation function. The results for both plane and round jets are

discussed below.
5.3.1 Plane jet

In the present calculations, the initial condition for the velocity

is
U=Uyexp(-y?)

The k and £ initial conditions are
k=0. 06UNzexp( -y?)
£=0.09k*" S /H

Here UN is the jet nozzle velocity. The 6% and 9% levels of intensity
are taken here so that the predicted result in the near field resembles

closely that of the measured data. Similar values were used by Chen and

Nikitopolous [23].
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Figure 5.1 shows the comparison of velocity profile for a plane jet
in the region of self-preservation at x/D=75. The experimental data
shown in the previous chapter is represented once again in figure 5.1
and most of the points fall in one line. The dashed line is the
predicted result of the one-scale model while the chain-dashed line
gives the results of the two-scale model. The agreement is excellent
between calculations and experiment, except near the outer edge of the

jet.

In figure 5.2, the turbulent kinetic energy is shown. As mentioned in
chapter IV, there is a large amount of scatter between various
experimental data, where the maximum k may vary from 0.065 to about
0.084. All the experimental data are shown once again along with the
predictions of the one-scale and two-scale models. The two-scale model
predicts turbulent kinetic energy within experimental scatter near the
centerline. In the outer edge of the jet, the two-scale model predicts a
larger k. This larger 'tail' is, perhaps, due to the numerical

diffusion problem.

The Reynolds stress profile of a self-preserving plane jet at x/D=75
is shown in figure 5.3. There is a slight difference in value between
experimental data, one-scale and two-scale models away from y/y%=1.5.
The maximum Reynolds stress obtained by various investigators, as shown
in table 4.2, varies from about 0.02 to about 0.026. The prediction of
the two-scale model shows good agreement with the data by giving a
larger peak than the one-scale model. These predictions can be

considered accurate within experimental uncertainty.
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The results discussed so far are in the self-preserving region of a
plane jet where x/D >40. Figure 5.4 shows the velocity decay in the near
region of a jet. The slight difference in the results can be attributed
to the difference in initial conditions at the nozzle. Chen and
Nikitopolous [23] found that the larger the turbulence intensity at the
jet exit, the shorter is the potential core length. They found that when
the initial turbulent intensity is taken to be 6% of the mean flow
kinetic energy, the predicted potential core agrees with that measured
by experiment [57]. Therefore, 6% value is used in the present
calculations. The experimental data of Van der Hegge [31] and Bradbury
[30] are shown along with the prediction of the two models. With 6%
turbulence intensity, the two-scale model predicts the core length less
than that of the one-scale model. Hence, it is assumed that a smaller
turbulent intensity might be necéssary for the two-scale model to have

better agreement with experiment.

The spreading rate obtained by the one-scale and the two-scale models
are 0.112 and 0.109 respectively, both of which are close to the

recommended value of 0.11 obtained experimentally.

5.3.2 Round jet

One of the major improvements of the two-scale turbulence model is
the prediction of round jet flow field. As shown in table 5.1, the two-
scale model predicts correctly a spreading rate of 0.081 for the round

jet while the one-scale model, without varying the turbulent constants
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from that used in the plane jet predictiom, gives 0.119, a 45% larger
spread rate than the experimental value. It should be remarked that in
order to remedy the deficiency of the one-scale model in predicting the
round jet flow field, many ad hoc proposals [58-60] were put forth. Pope

[58] proposed that the constant C82 be modified as

Csz=l'9 - 0.79%

where

1.k.® 3U av. 2%y
- 4(5) (ar ° re

Ir’ r

Rodi [4] proposed a modification of the constant C82 used in the g-

equation. The correction is

du 0.2

y
C,, = 1.92 - 0. 0667[——i(|——-| °)]

Several other modifications have also been suggested, namely, by Morse

[59] and McGuirk and Rodi [60].

The velocity profile for a round jet is shown in figure 5.5. The
initial conditions for U, k and & at the jet exit are the same as those
of a plane jet. It should be remarked that the abscissa is now y/x. The
prediction of the one-scale model with the same constants as for plane

jet gives incorrect spread rate as shown in figure 5.5.
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The experimental data plotted in figure 5.5 are obtained for a wide
range of x/D. Hetsroni's [32] measurements were upto a distance of
x/D=35 while Wygnanski [33] measured up to x/D=40. These measurements
are somewhat different from those of Shearer [34] et al. who collected
data as far as 510 diameters downstream. Overall, these data points :all
in one curve within a certain amount of scatter indicating that the mean
flow reaches similarity some distance downstream of x/D=40. This is
further confirmed by the result predicted by the two-scale model where
the result of the calculations are taken at x/D=75. The predicted
results agree very well with the experiment throughout the whole region,
except near the edge of the outer region where the measurement may be
affected by the intermittency between laminar and turbulent flow. The
fact that the centerline velocity predicted at x/D=75 agrees well with
the data shows that the velocity decay along the axial line is

satisfactory.

Figure 5.6 gives the distribution of turbulent kinetic emergy in a
round jet. The calculations are taken at x/D=75. From this figure, it
is clear that there is a large variation near the center of the jet.
Wygnanski's data, taken at x/D=40 only, indicates a value of kc/Uoz of
0.1 which is higher than 0.08 measured by Shearer. The latter made
measurements up to x/D of 510. This difference in the centerline kinetic
energy could be due to the fact that turbulence quantities become self-
preserving much after the mean quantities become self-similar. The one-

scale model due to its inability to predict correctly the spreading rate
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predicts turbulent kinetic energy distribution further away from the
experimental data. Using the one-scale turbulence model without the
modified constants, a maximum value of 0.095 is obtained at the
centerline while the two-scale model predicts a value of 0.067.
Although more experimental data are necessary to decide the level of
turbulence intensity at the jet centerline, it seems that the two-scale

model may predict a smaller turbulent intensity than the available data.

Figure 5.7 shows the Reynolds stress distribution in a round jet.
There is, once again, a difference of about 20% in the maximum value of
the Reynolds stress as obtained by Wygnanski and by Shearer. The former
measured a peak value of 0.0168 while Shearer got a value of 0.020. The
prediction of the one-scale model indicates a maximum Reynolds stress of
0.025 whereas the value of 0.019 obtained by the two-scale model is
closer to the experimental data of Shearer. In general, the two-scale

model predicts satisfactory results.

Figure 5.8 gives the centerline velocity decay for a round jet using
the one-scale and two-scale models along with the experimental data of
Corssin [35], Wygnanski {33] and Shearer [34]. The difference in the
result is due to the initial condition of the turbulent kinetic energy
and the mean velocity profile. Chen and Nikitopolous [23] showed tﬁat
the initial potential core length is a strong function of tﬁe initial
mean velocity profile and turbulent kinetic energy. For fixed turbulent

intensity at 1.25% of the mean kinetic energy, the core length is about

7.3 jet diameters with a flat exit velocity profile and 3.25 with a
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triangular exit velocity profile. In the present calculation, a

turbulent intensity of 6% and the exit mean velocity profile given by
U=UNexp(-yz)

was used. The prediction of the two-scale turbulence model indicates a
core length of about 5 diameters which agrees with the measured core

length.

5.4 Plane wake

The initial conditions used in the calculations of the plane wake are
1/7
U=U, (y/8)"/

k=0.008U_*Sin[1.57(1 - y/&)]

£=0.09k*"%/§

where UE is the free stream velocity and § is the boundary layer
thickness at the beginning of the wake flow. Most of the existing
turbulence models used in the calculation of turbulent flows do not
accurately predict some of the flow parameters of turbulent wakes, in
particular, the spread rate of the wake. This is, perhaps, due to the
fact that the turbulent process in a wake involves complex interactiom
among turbulent diffusion, production and dissipation and also due to
the fact that the flow in the far wake region is not fully turbulent. As
shown in table 5.1 , the one-scale model underpredicts the spreading

rate by about 30%. The measured spreading rate, defined as
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is 0.098 while the one-scale model gives 0.068. On the other hand, the

two-scale model predicts quite satisfactorily a spread rate of 0.0975.

Figure 5.9 shows the asymptotic velocity profile in the far wake
region where x/0=600. The momentum thickness, 6, is obtained from the
velocity profile at the trailing edge. The experimental result is that
of Pot [39], taken at x/8=1000, which compares very well with the
predicted profile of the two-scale model except at the edge of the wake.
When the predicted velocity profile is plotted against y/y%, the one-
scale and two-scale turbulence models differ somewhat near the edge of
the wake. However, it should be noted that the y% predicted by the one-

scale model is 30% lower than experimental value.

In figure 5.10, the Reynolds stress versus y/y% is shown for the far
wake. The values calculated from the one-scale model differ considerably
from that by the two-scale model and experiment. Patel et al. [37]
improved the one-scale turbulence model with the turbulent constants
altered and by introducing the intermittency near the edge of the flow.
Their result showed some improvement in the prediction. However, it is
emphasized that no modification of turbulent constants were needed for

the two-scale turbulence model in predicting the wake flow.

Figure 5.11 gives the center-line velocity defect in the near and far

wake region. UE and Uo are the free stream and centerline velocity
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respectively. The results of both the one-scale and two-scale models

are in good agreement with experimental results.

5.5 Plane mixing laver

The accurate prediction of mixing layer flow depends heavily on the
initial conditions since the mixing flow resembles the initial

development of a jet.

Figure 5.12 shows the velocity profile in a mixing laver obtained at
x/D=5. Here D is the width of the jet exit. The calculations were done

from x/D=0 to x/D=5 with the initial conditions for U and k as
U=0 for y>0
U=UI for y<0
k=0.OlUI2exp(-y2) for y<0

where UI is the initial velocity of the mixing flow. The calculations
are presented only for the two-scale model since one-scale model
predicts satisfactorily the gross properties. The two-scale model also
predicts velocity distribution which is in good agreement with
experimental results. The kinetic energy profile obtained by various
experiments [41-46] varies considefably as shown in figure 5.13.

However, the model generally predicts satisfactory results.
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5.6 Jets flowing into moving surrounding

In this section, jet flows into moving surroundings are considered
where the jet exit velocity is larger than the free-stream velocity. As
mentioned in chapter IV, jets flowing into moving surrounding are ¢ ly
approximately self-similar. The flow field can be approximately divided
into two regions, namely, strong jet region where the strain rate is
large and a weak region where the strain rate falls from relatively
large to small values. This weak jet region is an important test case
for turbulence models, since turbulence process in this region of weak
strain rate involves not only turbulent production and dissipation but
also significant amount of turbulent diffusion. Therefore, unless the
turbulent transport equations are properly modelled, the predictability

may not be accurate. The initial conditions for the jet are
U=Uyexp(-y*)
k=0.06UN2exp(-yz)

and for the free stream are
U=UE=Constant

K=0
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5.6.1 Plane jet

Experimental data of Bradbury and Riley [30] shows that except near
the nozzle exit, the velocity profiles collapse into a single curve

independent of the ratio

where UE is the free stream velocity and UO is the centerline velocity.
With Uo varying in the axial coordinate, the ratio, A, may be used to
denote various distances downstream and to indicate when self-similarity
is achieved. Figure 5.14 shows the velocity profiles for a plane jet.
The calculations of the one-scale and two-scale models are shown along
with the experimental data. Since the flow far downstream becomes
approximately self-similar, calculations are shown for only one location
x/D=75. The ratio, UN/UE’ of jet exit velocity to free stream velocity
used in the calculation was 3.3. The results of the two models show

good agreement with the experimental data of Bradbury and Riley [30].

In figure 5.15, the decay of centerline velocity of the plane jet is
shown. The predicted centerline velocity by the two-scale model gives
slightly slower decay rate. Nevertheless, the calculations tend to

reach experimental value far downstream.
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5.6.2 Round jet

For a round jet, the predictions of the one-scale and two-scale
models are compared with the experimental result of Antconia and Bilger
(49] as shown in figure 5.16. The experimental data collapse into a
single curve for all distances beyond x/D=38. Hence, the velocity
profile at x/D=75 is shown where the flow is approximately self-similar.

The ratio of the nozzle velocity UN to the free stream velocity UE
chosen is 3.3. There is a good agreement between the experimental

result and the two turbulence models.

The Reynolds stress is shown in figure 5.17 for x/D=75. According to
the exﬁerimental data of Antonio and Bilger, the stress at x/D=248 is
larger than that at x/D=152. This indicates that the turbulence
quantities have not reached self-similarity. The calculations of the
one-scale and two-scale models are shown for x/D of 75. Around y/y% of
0.8, there is some difference between the two models and the
experimental data. The predicted Reynolds stress in general follows the
trend of the experiment but gives smaller magnitude particularly near
the peak or y/y%=0.8. The cause of large value of measured Reynolds
stress probably is due to the initial conditions where in the experiment
the nozzle of the round jet has a finite thickness while it is assumed
infinitely thin in the computation. Furthermore, an increase in the
initial turbulent kinetic energy for the calculation can not only cause
steeper decay of centerline velocity than that shown in figure 5.15 but

also increase the predicted Reynolds stress in figure 5.17.
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5.7 Sensitivitv of the Coefficients

This section gives a brief discussion of the sensitivity of the
coefficients csl and CsZ in the £-equation. From homogeneous shear flow
and flow behind a grid turbulence, these coefficients were found to be
18.90/(Re)% for the two-scale second order closure model of ﬁ;ﬁ}, k and

€. However, the coefficient Ce was modified to be 17.50/(Re)% for the

1
two-scale k-¢ model. This modification was made because, in the
cglibration of Csl and CEZ’ the diffusion terms in k and & equations for
both homogeneous and grid turbulence flows were neglected which is not
the case. The values C£1=17.5/(Re)% and C52=18.9/(Re)% were obtained by

solving the plane jet flow where the turbulent diffusion term is

increased in the calculation.

It is known that flow prediction based on the one-scale turbulence
model is very sensitive to the C52 coefficient which has a value between
1.90 and 1.92. Any value outside this range may cause the prediction to
change significantly. On the other hand, for computation based on the
two-scale turbulence model, C82 may be changed from 11.90/(Re)% to
18.90/(Re)% and Cel from 10.50/(Re)£ to 17.50/(Re)%, the prediction is
quite stable and satisfactory as long as the same difference of

3 :
1.4/(Re)* between Csl and CsZ is kept.

Table 5.2 shows the spreading rate for a plane jet for various values
of Csl and C52' These calculations were done for Reynolds number

ranging from 12,000 to 120,000.
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Table 5.2

Sensitivity of spreading rate on
the coefficients

Re Czl/(Re)% CEZ/(Re)% S
12,000 17.50 18.90 0.1017
" 15.50 16.90 0.1146
" 10.50 11.90 0.1200
24,000 17.50 18.90 0.1000
120,000 17.50 18.90 0.1009

The spreading rate varies from 0.1 to 0.12 for a change in C52 from
10.50/(Re)% to 18.90/(Re)i at a Reynolds number of 12,000. Hence it can
be concluded that there is a slight change in S even with an appreciable

change in the coefficients. This difference can be attributed more to

the GENMIX program than to the physical phenomenon.

The effect of the Reynolds number is also shown in table 5.2 for a

1 2 used are 17.50 and 18.90
6

respectively. The Reynolds number is changed from 104 to 10°. The

plane jet flow. The values of CE and Ce
change in the spreading rate is again very small. Thus, it can be said
that a change in Reynolds number does not affect the overall structure
of the jet. It should be remarked, however, that by changing the
coefficients and keeping Reynolds number fixed is effectively the same
as keeping the coefficients fixed and changing Reynolds number. Since
there is no set pattern in the value of S, the difference is due to the

numerical problem.
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To further study the effect of Reynolds number, the kinetic energy is
calculated for various Reynolds numbers. Figure 5.18 showsthat there is
very little difference in the kinetic energy profile at different
Reynolds numbers. The difference shown in this figure may be due to the
numerical diffusion in the program which calculates the flow using

dimensional quantities.
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CHAPTER VI

PREDICTION OF TURBULENT BUOYANT JETS

This chapter shows the predictions of the two-scale turbulence model
for buoyant jets based on equations (3.31), (3.32), (3.33), (5.35) and
(3.36) and that of the one-scale model based on equations (3.31),
(3.32), (3.33), (3.35) and (1.10). As mentioned in chapter IV, the
amount of experimental data available for turbulent transport quantities
in buoyant jets is scarce and insufficient to test the accuracy of the
turbulence model. Hence, most of the comparison between one-scale
model, two-scale model and experimental data is confined to mean flow
quantities. The velocity and temperature decay along the jet axis are

shown for various Froude numbers. In the present study, Froude number

is defined as

2

glp, - »,)D
where

p°=f1uid density at jet exit
pa=ambient fluid density
Uo=jet exit velocity

D =diameter or width of jet
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Some of the measurements of normal stress u? and the kinetic energy are

also presented, whenever available.

6.1 Bouvant plane jet

The exit and initial conditions for plane buoyant jets are the same

as that of nonbuoyant jets, namely
U=UNexp(-y2)
k=0.O6UN2exp(~yz)

£=0.09k* ®/H

For the temperature, T and fluctuating temperature, 82, the jet exit

conditions were set as
- = - -y
T - T,=(T, - T,)exp(-y?)
ry r 2 )
8 0.06('1'o Ta) exp(-y*)

The calculation procedure is carried out similar to that for the

nonbuoyant jet except that additional equations for T and 8% are

included.

The most significant characteristic to be predicted by the turbulence
model is the temperature or velocity rate of spread for buoyant jets.

These parameters are defined as

d
s = —3U

U dx
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and

The recommended experimental value of the spread rate of velocity is
0.12 while that for temperature is 0.13. In the present study, the
spread rates predicted by the two-scale turbulence model are 0.11 for
velocity and 0.135 for temperatur